Mister Exam

Other calculators


y=sin(3x-5x^2)

Derivative of y=sin(3x-5x^2)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   /         2\
sin\3*x - 5*x /
sin(5x2+3x)\sin{\left(- 5 x^{2} + 3 x \right)}
sin(3*x - 5*x^2)
Detail solution
  1. Let u=5x2+3xu = - 5 x^{2} + 3 x.

  2. The derivative of sine is cosine:

    ddusin(u)=cos(u)\frac{d}{d u} \sin{\left(u \right)} = \cos{\left(u \right)}

  3. Then, apply the chain rule. Multiply by ddx(5x2+3x)\frac{d}{d x} \left(- 5 x^{2} + 3 x\right):

    1. Differentiate 5x2+3x- 5 x^{2} + 3 x term by term:

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: xx goes to 11

        So, the result is: 33

      2. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: x2x^{2} goes to 2x2 x

        So, the result is: 10x- 10 x

      The result is: 310x3 - 10 x

    The result of the chain rule is:

    (310x)cos(5x23x)\left(3 - 10 x\right) \cos{\left(5 x^{2} - 3 x \right)}

  4. Now simplify:

    (310x)cos(x(5x3))\left(3 - 10 x\right) \cos{\left(x \left(5 x - 3\right) \right)}


The answer is:

(310x)cos(x(5x3))\left(3 - 10 x\right) \cos{\left(x \left(5 x - 3\right) \right)}

The graph
02468-8-6-4-2-1010-200200
The first derivative [src]
              /          2\
(3 - 10*x)*cos\-3*x + 5*x /
(310x)cos(5x23x)\left(3 - 10 x\right) \cos{\left(5 x^{2} - 3 x \right)}
The second derivative [src]
                                   2                  
-10*cos(x*(-3 + 5*x)) + (-3 + 10*x) *sin(x*(-3 + 5*x))
(10x3)2sin(x(5x3))10cos(x(5x3))\left(10 x - 3\right)^{2} \sin{\left(x \left(5 x - 3\right) \right)} - 10 \cos{\left(x \left(5 x - 3\right) \right)}
The third derivative [src]
            /                                  2                  \
(-3 + 10*x)*\30*sin(x*(-3 + 5*x)) + (-3 + 10*x) *cos(x*(-3 + 5*x))/
(10x3)((10x3)2cos(x(5x3))+30sin(x(5x3)))\left(10 x - 3\right) \left(\left(10 x - 3\right)^{2} \cos{\left(x \left(5 x - 3\right) \right)} + 30 \sin{\left(x \left(5 x - 3\right) \right)}\right)
The graph
Derivative of y=sin(3x-5x^2)