Mister Exam

Derivative of y=sin2x/lnx

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
sin(2*x)
--------
 log(x) 
$$\frac{\sin{\left(2 x \right)}}{\log{\left(x \right)}}$$
sin(2*x)/log(x)
Detail solution
  1. Apply the quotient rule, which is:

    and .

    To find :

    1. Let .

    2. The derivative of sine is cosine:

    3. Then, apply the chain rule. Multiply by :

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: goes to

        So, the result is:

      The result of the chain rule is:

    To find :

    1. The derivative of is .

    Now plug in to the quotient rule:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
2*cos(2*x)    sin(2*x)
---------- - ---------
  log(x)          2   
             x*log (x)
$$\frac{2 \cos{\left(2 x \right)}}{\log{\left(x \right)}} - \frac{\sin{\left(2 x \right)}}{x \log{\left(x \right)}^{2}}$$
The second derivative [src]
                           /      2   \         
                           |1 + ------|*sin(2*x)
              4*cos(2*x)   \    log(x)/         
-4*sin(2*x) - ---------- + ---------------------
               x*log(x)           2             
                                 x *log(x)      
------------------------------------------------
                     log(x)                     
$$\frac{- 4 \sin{\left(2 x \right)} - \frac{4 \cos{\left(2 x \right)}}{x \log{\left(x \right)}} + \frac{\left(1 + \frac{2}{\log{\left(x \right)}}\right) \sin{\left(2 x \right)}}{x^{2} \log{\left(x \right)}}}{\log{\left(x \right)}}$$
The third derivative [src]
  /                           /      3         3   \                                   \
  |                           |1 + ------ + -------|*sin(2*x)     /      2   \         |
  |                           |    log(x)      2   |            3*|1 + ------|*cos(2*x)|
  |              6*sin(2*x)   \             log (x)/              \    log(x)/         |
2*|-4*cos(2*x) + ---------- - ------------------------------- + -----------------------|
  |               x*log(x)                3                             2              |
  \                                      x *log(x)                     x *log(x)       /
----------------------------------------------------------------------------------------
                                         log(x)                                         
$$\frac{2 \left(- 4 \cos{\left(2 x \right)} + \frac{6 \sin{\left(2 x \right)}}{x \log{\left(x \right)}} + \frac{3 \left(1 + \frac{2}{\log{\left(x \right)}}\right) \cos{\left(2 x \right)}}{x^{2} \log{\left(x \right)}} - \frac{\left(1 + \frac{3}{\log{\left(x \right)}} + \frac{3}{\log{\left(x \right)}^{2}}\right) \sin{\left(2 x \right)}}{x^{3} \log{\left(x \right)}}\right)}{\log{\left(x \right)}}$$
The graph
Derivative of y=sin2x/lnx