sin(2*x) -------- log(x)
sin(2*x)/log(x)
Apply the quotient rule, which is:
and .
To find :
Let .
The derivative of sine is cosine:
Then, apply the chain rule. Multiply by :
The derivative of a constant times a function is the constant times the derivative of the function.
Apply the power rule: goes to
So, the result is:
The result of the chain rule is:
To find :
The derivative of is .
Now plug in to the quotient rule:
Now simplify:
The answer is:
2*cos(2*x) sin(2*x) ---------- - --------- log(x) 2 x*log (x)
/ 2 \ |1 + ------|*sin(2*x) 4*cos(2*x) \ log(x)/ -4*sin(2*x) - ---------- + --------------------- x*log(x) 2 x *log(x) ------------------------------------------------ log(x)
/ / 3 3 \ \ | |1 + ------ + -------|*sin(2*x) / 2 \ | | | log(x) 2 | 3*|1 + ------|*cos(2*x)| | 6*sin(2*x) \ log (x)/ \ log(x)/ | 2*|-4*cos(2*x) + ---------- - ------------------------------- + -----------------------| | x*log(x) 3 2 | \ x *log(x) x *log(x) / ---------------------------------------------------------------------------------------- log(x)