Mister Exam

Other calculators


y=(sin2x)/(2x+1)

Derivative of y=(sin2x)/(2x+1)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
sin(2*x)
--------
2*x + 1 
$$\frac{\sin{\left(2 x \right)}}{2 x + 1}$$
sin(2*x)/(2*x + 1)
Detail solution
  1. Apply the quotient rule, which is:

    and .

    To find :

    1. Let .

    2. The derivative of sine is cosine:

    3. Then, apply the chain rule. Multiply by :

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: goes to

        So, the result is:

      The result of the chain rule is:

    To find :

    1. Differentiate term by term:

      1. The derivative of the constant is zero.

      2. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: goes to

        So, the result is:

      The result is:

    Now plug in to the quotient rule:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
  2*sin(2*x)   2*cos(2*x)
- ---------- + ----------
           2    2*x + 1  
  (2*x + 1)              
$$\frac{2 \cos{\left(2 x \right)}}{2 x + 1} - \frac{2 \sin{\left(2 x \right)}}{\left(2 x + 1\right)^{2}}$$
The second derivative [src]
  /            2*cos(2*x)   2*sin(2*x)\
4*|-sin(2*x) - ---------- + ----------|
  |             1 + 2*x              2|
  \                         (1 + 2*x) /
---------------------------------------
                1 + 2*x                
$$\frac{4 \left(- \sin{\left(2 x \right)} - \frac{2 \cos{\left(2 x \right)}}{2 x + 1} + \frac{2 \sin{\left(2 x \right)}}{\left(2 x + 1\right)^{2}}\right)}{2 x + 1}$$
The third derivative [src]
  /            6*sin(2*x)   3*sin(2*x)   6*cos(2*x)\
8*|-cos(2*x) - ---------- + ---------- + ----------|
  |                     3    1 + 2*x              2|
  \            (1 + 2*x)                 (1 + 2*x) /
----------------------------------------------------
                      1 + 2*x                       
$$\frac{8 \left(- \cos{\left(2 x \right)} + \frac{3 \sin{\left(2 x \right)}}{2 x + 1} + \frac{6 \cos{\left(2 x \right)}}{\left(2 x + 1\right)^{2}} - \frac{6 \sin{\left(2 x \right)}}{\left(2 x + 1\right)^{3}}\right)}{2 x + 1}$$
The graph
Derivative of y=(sin2x)/(2x+1)