Detail solution
-
Let .
-
Apply the power rule: goes to
-
Then, apply the chain rule. Multiply by :
-
The derivative of sine is cosine:
The result of the chain rule is:
The answer is:
The first derivative
[src]
$$20 \sin^{19}{\left(x \right)} \cos{\left(x \right)}$$
The second derivative
[src]
18 / 2 2 \
20*sin (x)*\- sin (x) + 19*cos (x)/
$$20 \left(- \sin^{2}{\left(x \right)} + 19 \cos^{2}{\left(x \right)}\right) \sin^{18}{\left(x \right)}$$
The third derivative
[src]
17 / 2 2 \
40*sin (x)*\- 29*sin (x) + 171*cos (x)/*cos(x)
$$40 \left(- 29 \sin^{2}{\left(x \right)} + 171 \cos^{2}{\left(x \right)}\right) \sin^{17}{\left(x \right)} \cos{\left(x \right)}$$