Mister Exam

Derivative of (20cos20x)/(sin20x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
20*cos(20*x)
------------
 sin(20*x)  
$$\frac{20 \cos{\left(20 x \right)}}{\sin{\left(20 x \right)}}$$
(20*cos(20*x))/sin(20*x)
Detail solution
  1. Apply the quotient rule, which is:

    and .

    To find :

    1. The derivative of a constant times a function is the constant times the derivative of the function.

      1. Let .

      2. The derivative of cosine is negative sine:

      3. Then, apply the chain rule. Multiply by :

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: goes to

          So, the result is:

        The result of the chain rule is:

      So, the result is:

    To find :

    1. Let .

    2. The derivative of sine is cosine:

    3. Then, apply the chain rule. Multiply by :

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: goes to

        So, the result is:

      The result of the chain rule is:

    Now plug in to the quotient rule:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
              2      
       400*cos (20*x)
-400 - --------------
            2        
         sin (20*x)  
$$-400 - \frac{400 \cos^{2}{\left(20 x \right)}}{\sin^{2}{\left(20 x \right)}}$$
The second derivative [src]
     /         2      \          
     |    2*cos (20*x)|          
8000*|2 + ------------|*cos(20*x)
     |        2       |          
     \     sin (20*x) /          
---------------------------------
            sin(20*x)            
$$\frac{8000 \left(2 + \frac{2 \cos^{2}{\left(20 x \right)}}{\sin^{2}{\left(20 x \right)}}\right) \cos{\left(20 x \right)}}{\sin{\left(20 x \right)}}$$
The third derivative [src]
        /                              /         2      \\
        |                      2       |    6*cos (20*x)||
        |                   cos (20*x)*|5 + ------------||
        |         2                    |        2       ||
        |    3*cos (20*x)              \     sin (20*x) /|
-160000*|2 + ------------ + -----------------------------|
        |        2                       2               |
        \     sin (20*x)              sin (20*x)         /
$$- 160000 \left(\frac{\left(5 + \frac{6 \cos^{2}{\left(20 x \right)}}{\sin^{2}{\left(20 x \right)}}\right) \cos^{2}{\left(20 x \right)}}{\sin^{2}{\left(20 x \right)}} + 2 + \frac{3 \cos^{2}{\left(20 x \right)}}{\sin^{2}{\left(20 x \right)}}\right)$$