Mister Exam

Other calculators


y=(\root(7)(x^(4))-4\root(3)(x^(2))+(1)/(2))/(\root(5)(x^(3)))

Derivative of y=(\root(7)(x^(4))-4\root(3)(x^(2))+(1)/(2))/(\root(5)(x^(3)))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  ___  4     4    2      
\/ 7 *x  - -----*x  + 0.5
             ___         
           \/ 3          
-------------------------
           ___  3        
         \/ 5 *x         
$$\frac{\left(\sqrt{7} x^{4} - x^{2} \frac{4}{\sqrt{3}}\right) + 0.5}{\sqrt{5} x^{3}}$$
(sqrt(7)*x^4 - 4/sqrt(3)*x^2 + 0.5)/((sqrt(5)*x^3))
Detail solution
  1. Apply the quotient rule, which is:

    and .

    To find :

    1. Differentiate term by term:

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: goes to

        So, the result is:

      2. The derivative of the constant is zero.

      3. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: goes to

        So, the result is:

      The result is:

    To find :

    1. The derivative of a constant times a function is the constant times the derivative of the function.

      1. Apply the power rule: goes to

      So, the result is:

    Now plug in to the quotient rule:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
                                     ___ /  ___  4     4    2      \
                                 3*\/ 5 *|\/ 7 *x  - -----*x  + 0.5|
  ___ /                   ___\           |             ___         |
\/ 5  |    ___  3   8*x*\/ 3 |           \           \/ 3          /
-----*|4*\/ 7 *x  - ---------| - -----------------------------------
    3 \                 3    /                      4               
 5*x                                             5*x                
$$\frac{\sqrt{5}}{5 x^{3}} \left(4 \sqrt{7} x^{3} - \frac{8 \sqrt{3} x}{3}\right) - \frac{3 \sqrt{5} \left(\left(\sqrt{7} x^{4} - x^{2} \frac{4}{\sqrt{3}}\right) + 0.5\right)}{5 x^{4}}$$
The second derivative [src]
        /     ___             ___  2       ___  4             \
    ___ |10*\/ 3    1.5 - 4*\/ 3 *x  + 3*\/ 7 *x        ___  2|
4*\/ 5 *|-------- + ----------------------------- - 3*\/ 7 *x |
        |   3                      2                          |
        \                         x                           /
---------------------------------------------------------------
                                 3                             
                              5*x                              
$$\frac{4 \sqrt{5} \left(- 3 \sqrt{7} x^{2} + \frac{10 \sqrt{3}}{3} + \frac{3 \sqrt{7} x^{4} - 4 \sqrt{3} x^{2} + 1.5}{x^{2}}\right)}{5 x^{3}}$$
The third derivative [src]
  /               ___ /          ___  2       ___  4\       ___ /      ___       ___  2\        ___ /      ___       ___  2\\
  |    ____   5*\/ 5 *\1.5 - 4*\/ 3 *x  + 3*\/ 7 *x /   3*\/ 5 *\- 2*\/ 3  + 9*\/ 7 *x /   12*\/ 5 *\- 2*\/ 3  + 3*\/ 7 *x /|
4*|6*\/ 35  - --------------------------------------- - -------------------------------- + ---------------------------------|
  |                               4                                     2                                   2               |
  \                              x                                     x                                   x                /
-----------------------------------------------------------------------------------------------------------------------------
                                                                2                                                            
                                                             5*x                                                             
$$\frac{4 \left(6 \sqrt{35} + \frac{12 \sqrt{5} \left(3 \sqrt{7} x^{2} - 2 \sqrt{3}\right)}{x^{2}} - \frac{3 \sqrt{5} \left(9 \sqrt{7} x^{2} - 2 \sqrt{3}\right)}{x^{2}} - \frac{5 \sqrt{5} \left(3 \sqrt{7} x^{4} - 4 \sqrt{3} x^{2} + 1.5\right)}{x^{4}}\right)}{5 x^{2}}$$
The graph
Derivative of y=(\root(7)(x^(4))-4\root(3)(x^(2))+(1)/(2))/(\root(5)(x^(3)))