Mister Exam

Other calculators

Derivative of y=(1-tgx)*(lnx+2^x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
             /          x\
(1 - tan(x))*\log(x) + 2 /
$$\left(1 - \tan{\left(x \right)}\right) \left(2^{x} + \log{\left(x \right)}\right)$$
(1 - tan(x))*(log(x) + 2^x)
Detail solution
  1. Apply the product rule:

    ; to find :

    1. Differentiate term by term:

      1. The derivative of the constant is zero.

      2. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Rewrite the function to be differentiated:

        2. Apply the quotient rule, which is:

          and .

          To find :

          1. The derivative of sine is cosine:

          To find :

          1. The derivative of cosine is negative sine:

          Now plug in to the quotient rule:

        So, the result is:

      The result is:

    ; to find :

    1. Differentiate term by term:

      1. The derivative of is .

      The result is:

    The result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
             /1    x       \   /        2   \ /          x\
(1 - tan(x))*|- + 2 *log(2)| + \-1 - tan (x)/*\log(x) + 2 /
             \x            /                               
$$\left(1 - \tan{\left(x \right)}\right) \left(2^{x} \log{\left(2 \right)} + \frac{1}{x}\right) + \left(2^{x} + \log{\left(x \right)}\right) \left(- \tan^{2}{\left(x \right)} - 1\right)$$
The second derivative [src]
 /              /  1     x    2   \     /       2   \ /1    x       \     /       2   \ / x         \       \
-|(-1 + tan(x))*|- -- + 2 *log (2)| + 2*\1 + tan (x)/*|- + 2 *log(2)| + 2*\1 + tan (x)/*\2  + log(x)/*tan(x)|
 |              |   2             |                   \x            /                                       |
 \              \  x              /                                                                         /
$$- (2 \left(2^{x} + \log{\left(x \right)}\right) \left(\tan^{2}{\left(x \right)} + 1\right) \tan{\left(x \right)} + 2 \left(2^{x} \log{\left(2 \right)} + \frac{1}{x}\right) \left(\tan^{2}{\left(x \right)} + 1\right) + \left(2^{x} \log{\left(2 \right)}^{2} - \frac{1}{x^{2}}\right) \left(\tan{\left(x \right)} - 1\right))$$
3-я производная [src]
 /              /2     x    3   \     /       2   \ /  1     x    2   \     /       2   \ /         2   \ / x         \     /       2   \ /1    x       \       \
-|(-1 + tan(x))*|-- + 2 *log (2)| + 3*\1 + tan (x)/*|- -- + 2 *log (2)| + 2*\1 + tan (x)/*\1 + 3*tan (x)/*\2  + log(x)/ + 6*\1 + tan (x)/*|- + 2 *log(2)|*tan(x)|
 |              | 3             |                   |   2             |                                                                   \x            /       |
 \              \x              /                   \  x              /                                                                                         /
$$- (2 \left(2^{x} + \log{\left(x \right)}\right) \left(\tan^{2}{\left(x \right)} + 1\right) \left(3 \tan^{2}{\left(x \right)} + 1\right) + 6 \left(2^{x} \log{\left(2 \right)} + \frac{1}{x}\right) \left(\tan^{2}{\left(x \right)} + 1\right) \tan{\left(x \right)} + 3 \left(2^{x} \log{\left(2 \right)}^{2} - \frac{1}{x^{2}}\right) \left(\tan^{2}{\left(x \right)} + 1\right) + \left(2^{x} \log{\left(2 \right)}^{3} + \frac{2}{x^{3}}\right) \left(\tan{\left(x \right)} - 1\right))$$
The third derivative [src]
 /              /2     x    3   \     /       2   \ /  1     x    2   \     /       2   \ /         2   \ / x         \     /       2   \ /1    x       \       \
-|(-1 + tan(x))*|-- + 2 *log (2)| + 3*\1 + tan (x)/*|- -- + 2 *log (2)| + 2*\1 + tan (x)/*\1 + 3*tan (x)/*\2  + log(x)/ + 6*\1 + tan (x)/*|- + 2 *log(2)|*tan(x)|
 |              | 3             |                   |   2             |                                                                   \x            /       |
 \              \x              /                   \  x              /                                                                                         /
$$- (2 \left(2^{x} + \log{\left(x \right)}\right) \left(\tan^{2}{\left(x \right)} + 1\right) \left(3 \tan^{2}{\left(x \right)} + 1\right) + 6 \left(2^{x} \log{\left(2 \right)} + \frac{1}{x}\right) \left(\tan^{2}{\left(x \right)} + 1\right) \tan{\left(x \right)} + 3 \left(2^{x} \log{\left(2 \right)}^{2} - \frac{1}{x^{2}}\right) \left(\tan^{2}{\left(x \right)} + 1\right) + \left(2^{x} \log{\left(2 \right)}^{3} + \frac{2}{x^{3}}\right) \left(\tan{\left(x \right)} - 1\right))$$