Detail solution
-
Apply the product rule:
; to find :
-
Differentiate term by term:
-
The derivative of the constant is zero.
-
The derivative of a constant times a function is the constant times the derivative of the function.
-
Rewrite the function to be differentiated:
-
Apply the quotient rule, which is:
and .
To find :
-
The derivative of sine is cosine:
To find :
-
The derivative of cosine is negative sine:
Now plug in to the quotient rule:
So, the result is:
The result is:
; to find :
-
Differentiate term by term:
-
The derivative of is .
-
The result is:
The result is:
Now simplify:
The answer is:
The first derivative
[src]
/1 x \ / 2 \ / x\
(1 - tan(x))*|- + 2 *log(2)| + \-1 - tan (x)/*\log(x) + 2 /
\x /
$$\left(1 - \tan{\left(x \right)}\right) \left(2^{x} \log{\left(2 \right)} + \frac{1}{x}\right) + \left(2^{x} + \log{\left(x \right)}\right) \left(- \tan^{2}{\left(x \right)} - 1\right)$$
The second derivative
[src]
/ / 1 x 2 \ / 2 \ /1 x \ / 2 \ / x \ \
-|(-1 + tan(x))*|- -- + 2 *log (2)| + 2*\1 + tan (x)/*|- + 2 *log(2)| + 2*\1 + tan (x)/*\2 + log(x)/*tan(x)|
| | 2 | \x / |
\ \ x / /
$$- (2 \left(2^{x} + \log{\left(x \right)}\right) \left(\tan^{2}{\left(x \right)} + 1\right) \tan{\left(x \right)} + 2 \left(2^{x} \log{\left(2 \right)} + \frac{1}{x}\right) \left(\tan^{2}{\left(x \right)} + 1\right) + \left(2^{x} \log{\left(2 \right)}^{2} - \frac{1}{x^{2}}\right) \left(\tan{\left(x \right)} - 1\right))$$
/ /2 x 3 \ / 2 \ / 1 x 2 \ / 2 \ / 2 \ / x \ / 2 \ /1 x \ \
-|(-1 + tan(x))*|-- + 2 *log (2)| + 3*\1 + tan (x)/*|- -- + 2 *log (2)| + 2*\1 + tan (x)/*\1 + 3*tan (x)/*\2 + log(x)/ + 6*\1 + tan (x)/*|- + 2 *log(2)|*tan(x)|
| | 3 | | 2 | \x / |
\ \x / \ x / /
$$- (2 \left(2^{x} + \log{\left(x \right)}\right) \left(\tan^{2}{\left(x \right)} + 1\right) \left(3 \tan^{2}{\left(x \right)} + 1\right) + 6 \left(2^{x} \log{\left(2 \right)} + \frac{1}{x}\right) \left(\tan^{2}{\left(x \right)} + 1\right) \tan{\left(x \right)} + 3 \left(2^{x} \log{\left(2 \right)}^{2} - \frac{1}{x^{2}}\right) \left(\tan^{2}{\left(x \right)} + 1\right) + \left(2^{x} \log{\left(2 \right)}^{3} + \frac{2}{x^{3}}\right) \left(\tan{\left(x \right)} - 1\right))$$
The third derivative
[src]
/ /2 x 3 \ / 2 \ / 1 x 2 \ / 2 \ / 2 \ / x \ / 2 \ /1 x \ \
-|(-1 + tan(x))*|-- + 2 *log (2)| + 3*\1 + tan (x)/*|- -- + 2 *log (2)| + 2*\1 + tan (x)/*\1 + 3*tan (x)/*\2 + log(x)/ + 6*\1 + tan (x)/*|- + 2 *log(2)|*tan(x)|
| | 3 | | 2 | \x / |
\ \x / \ x / /
$$- (2 \left(2^{x} + \log{\left(x \right)}\right) \left(\tan^{2}{\left(x \right)} + 1\right) \left(3 \tan^{2}{\left(x \right)} + 1\right) + 6 \left(2^{x} \log{\left(2 \right)} + \frac{1}{x}\right) \left(\tan^{2}{\left(x \right)} + 1\right) \tan{\left(x \right)} + 3 \left(2^{x} \log{\left(2 \right)}^{2} - \frac{1}{x^{2}}\right) \left(\tan^{2}{\left(x \right)} + 1\right) + \left(2^{x} \log{\left(2 \right)}^{3} + \frac{2}{x^{3}}\right) \left(\tan{\left(x \right)} - 1\right))$$