Mister Exam

Other calculators


y=1/(2x*logx-x)

Derivative of y=1/(2x*logx-x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
        1       
1*--------------
  2*x*log(x) - x
$$1 \cdot \frac{1}{2 x \log{\left(x \right)} - x}$$
d /        1       \
--|1*--------------|
dx\  2*x*log(x) - x/
$$\frac{d}{d x} 1 \cdot \frac{1}{2 x \log{\left(x \right)} - x}$$
Detail solution
  1. Apply the quotient rule, which is:

    and .

    To find :

    1. The derivative of the constant is zero.

    To find :

    1. Differentiate term by term:

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: goes to

        So, the result is:

      2. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the product rule:

          ; to find :

          1. Apply the power rule: goes to

          ; to find :

          1. The derivative of is .

          The result is:

        So, the result is:

      The result is:

    Now plug in to the quotient rule:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
  -1 - 2*log(x)  
-----------------
                2
(2*x*log(x) - x) 
$$\frac{- 2 \log{\left(x \right)} - 1}{\left(2 x \log{\left(x \right)} - x\right)^{2}}$$
The second derivative [src]
   /                  2\
   |    (1 + 2*log(x)) |
-2*|1 - ---------------|
   \     -1 + 2*log(x) /
------------------------
   3                2   
  x *(-1 + 2*log(x))    
$$- \frac{2 \cdot \left(1 - \frac{\left(2 \log{\left(x \right)} + 1\right)^{2}}{2 \log{\left(x \right)} - 1}\right)}{x^{3} \left(2 \log{\left(x \right)} - 1\right)^{2}}$$
The third derivative [src]
  /                    3                   \
  |    3*(1 + 2*log(x))    6*(1 + 2*log(x))|
2*|1 - ----------------- + ----------------|
  |                    2    -1 + 2*log(x)  |
  \     (-1 + 2*log(x))                    /
--------------------------------------------
             4                2             
            x *(-1 + 2*log(x))              
$$\frac{2 \cdot \left(1 + \frac{6 \cdot \left(2 \log{\left(x \right)} + 1\right)}{2 \log{\left(x \right)} - 1} - \frac{3 \left(2 \log{\left(x \right)} + 1\right)^{3}}{\left(2 \log{\left(x \right)} - 1\right)^{2}}\right)}{x^{4} \left(2 \log{\left(x \right)} - 1\right)^{2}}$$
The graph
Derivative of y=1/(2x*logx-x)