/ 2 \ log\sin (x)*4*x/
d / / 2 \\ --\log\sin (x)*4*x// dx
Let .
The derivative of is .
Then, apply the chain rule. Multiply by :
The derivative of a constant times a function is the constant times the derivative of the function.
Apply the product rule:
; to find :
Apply the power rule: goes to
; to find :
Let .
Apply the power rule: goes to
Then, apply the chain rule. Multiply by :
The derivative of sine is cosine:
The result of the chain rule is:
The result is:
So, the result is:
The result of the chain rule is:
Now simplify:
The answer is:
2 4*sin (x) + 8*x*cos(x)*sin(x) ----------------------------- 2 4*x*sin (x)
/ 2 2 \ 2*x*cos(x) + sin(x) 2*\x*cos (x) - x*sin (x) + 2*cos(x)*sin(x)/ 2*(2*x*cos(x) + sin(x))*cos(x) - ------------------- + ------------------------------------------- - ------------------------------ x sin(x) sin(x) ---------------------------------------------------------------------------------------------------- x*sin(x)
/ 2 2 / 2 2 \ / 2 2 \ 2 \ |2*x*cos(x) + sin(x) - 3*cos (x) + 3*sin (x) + 4*x*cos(x)*sin(x) 4*\x*cos (x) - x*sin (x) + 2*cos(x)*sin(x)/*cos(x) 2*\x*cos (x) - x*sin (x) + 2*cos(x)*sin(x)/ 3*cos (x)*(2*x*cos(x) + sin(x)) 2*(2*x*cos(x) + sin(x))*cos(x) | 2*|------------------- - ------------------------------------------- + 2*x*cos(x) - -------------------------------------------------- - ------------------------------------------- + ------------------------------- + ------------------------------ + sin(x)| | 2 sin(x) 2 x*sin(x) 2 x*sin(x) | \ x sin (x) sin (x) / ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- x*sin(x)