Mister Exam

Other calculators


y=log((sin^2)(4x))

Derivative of y=log((sin^2)(4x))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   /   2       \
log\sin (x)*4*x/
$$\log{\left(\sin^{2}{\left(x \right)} 4 x \right)}$$
d /   /   2       \\
--\log\sin (x)*4*x//
dx                  
$$\frac{d}{d x} \log{\left(\sin^{2}{\left(x \right)} 4 x \right)}$$
Detail solution
  1. Let .

  2. The derivative of is .

  3. Then, apply the chain rule. Multiply by :

    1. The derivative of a constant times a function is the constant times the derivative of the function.

      1. Apply the product rule:

        ; to find :

        1. Apply the power rule: goes to

        ; to find :

        1. Let .

        2. Apply the power rule: goes to

        3. Then, apply the chain rule. Multiply by :

          1. The derivative of sine is cosine:

          The result of the chain rule is:

        The result is:

      So, the result is:

    The result of the chain rule is:

  4. Now simplify:


The answer is:

The graph
The first derivative [src]
     2                       
4*sin (x) + 8*x*cos(x)*sin(x)
-----------------------------
                2            
         4*x*sin (x)         
$$\frac{8 x \sin{\left(x \right)} \cos{\left(x \right)} + 4 \sin^{2}{\left(x \right)}}{4 x \sin^{2}{\left(x \right)}}$$
The second derivative [src]
                          /     2           2                     \                                 
  2*x*cos(x) + sin(x)   2*\x*cos (x) - x*sin (x) + 2*cos(x)*sin(x)/   2*(2*x*cos(x) + sin(x))*cos(x)
- ------------------- + ------------------------------------------- - ------------------------------
           x                               sin(x)                                 sin(x)            
----------------------------------------------------------------------------------------------------
                                              x*sin(x)                                              
$$\frac{- \frac{2 \cdot \left(2 x \cos{\left(x \right)} + \sin{\left(x \right)}\right) \cos{\left(x \right)}}{\sin{\left(x \right)}} + \frac{2 \left(- x \sin^{2}{\left(x \right)} + x \cos^{2}{\left(x \right)} + 2 \sin{\left(x \right)} \cos{\left(x \right)}\right)}{\sin{\left(x \right)}} - \frac{2 x \cos{\left(x \right)} + \sin{\left(x \right)}}{x}}{x \sin{\left(x \right)}}$$
The third derivative [src]
  /                             2           2                                         /     2           2                     \            /     2           2                     \        2                                                                   \
  |2*x*cos(x) + sin(x)   - 3*cos (x) + 3*sin (x) + 4*x*cos(x)*sin(x)                4*\x*cos (x) - x*sin (x) + 2*cos(x)*sin(x)/*cos(x)   2*\x*cos (x) - x*sin (x) + 2*cos(x)*sin(x)/   3*cos (x)*(2*x*cos(x) + sin(x))   2*(2*x*cos(x) + sin(x))*cos(x)         |
2*|------------------- - ------------------------------------------- + 2*x*cos(x) - -------------------------------------------------- - ------------------------------------------- + ------------------------------- + ------------------------------ + sin(x)|
  |          2                              sin(x)                                                          2                                              x*sin(x)                                   2                             x*sin(x)                    |
  \         x                                                                                            sin (x)                                                                                   sin (x)                                                      /
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
                                                                                                                             x*sin(x)                                                                                                                            
$$\frac{2 \cdot \left(2 x \cos{\left(x \right)} + \frac{3 \cdot \left(2 x \cos{\left(x \right)} + \sin{\left(x \right)}\right) \cos^{2}{\left(x \right)}}{\sin^{2}{\left(x \right)}} + \sin{\left(x \right)} - \frac{4 \left(- x \sin^{2}{\left(x \right)} + x \cos^{2}{\left(x \right)} + 2 \sin{\left(x \right)} \cos{\left(x \right)}\right) \cos{\left(x \right)}}{\sin^{2}{\left(x \right)}} - \frac{4 x \sin{\left(x \right)} \cos{\left(x \right)} + 3 \sin^{2}{\left(x \right)} - 3 \cos^{2}{\left(x \right)}}{\sin{\left(x \right)}} + \frac{2 \cdot \left(2 x \cos{\left(x \right)} + \sin{\left(x \right)}\right) \cos{\left(x \right)}}{x \sin{\left(x \right)}} - \frac{2 \left(- x \sin^{2}{\left(x \right)} + x \cos^{2}{\left(x \right)} + 2 \sin{\left(x \right)} \cos{\left(x \right)}\right)}{x \sin{\left(x \right)}} + \frac{2 x \cos{\left(x \right)} + \sin{\left(x \right)}}{x^{2}}\right)}{x \sin{\left(x \right)}}$$
The graph
Derivative of y=log((sin^2)(4x))