Mister Exam

Other calculators


y=log8(x^2+3x)

Derivative of y=log8(x^2+3x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   / 2      \
log\x  + 3*x/
-------------
    log(8)   
$$\frac{\log{\left(x^{2} + 3 x \right)}}{\log{\left(8 \right)}}$$
  /   / 2      \\
d |log\x  + 3*x/|
--|-------------|
dx\    log(8)   /
$$\frac{d}{d x} \frac{\log{\left(x^{2} + 3 x \right)}}{\log{\left(8 \right)}}$$
Detail solution
  1. The derivative of a constant times a function is the constant times the derivative of the function.

    1. Let .

    2. The derivative of is .

    3. Then, apply the chain rule. Multiply by :

      1. Differentiate term by term:

        1. Apply the power rule: goes to

        2. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: goes to

          So, the result is:

        The result is:

      The result of the chain rule is:

    So, the result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
     3 + 2*x     
-----------------
/ 2      \       
\x  + 3*x/*log(8)
$$\frac{2 x + 3}{\left(x^{2} + 3 x\right) \log{\left(8 \right)}}$$
The second derivative [src]
              2 
     (3 + 2*x)  
 2 - ---------- 
     x*(3 + x)  
----------------
x*(3 + x)*log(8)
$$\frac{2 - \frac{\left(2 x + 3\right)^{2}}{x \left(x + 3\right)}}{x \left(x + 3\right) \log{\left(8 \right)}}$$
The third derivative [src]
             /             2\
             |    (3 + 2*x) |
-2*(3 + 2*x)*|3 - ----------|
             \    x*(3 + x) /
-----------------------------
       2        2            
      x *(3 + x) *log(8)     
$$- \frac{2 \cdot \left(3 - \frac{\left(2 x + 3\right)^{2}}{x \left(x + 3\right)}\right) \left(2 x + 3\right)}{x^{2} \left(x + 3\right)^{2} \log{\left(8 \right)}}$$
The graph
Derivative of y=log8(x^2+3x)