Mister Exam

Other calculators

Derivative of 1/4(ln((x-1)/(x+1)))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   /x - 1\
log|-----|
   \x + 1/
----------
    4     
$$\frac{\log{\left(\frac{x - 1}{x + 1} \right)}}{4}$$
log((x - 1)/(x + 1))/4
Detail solution
  1. The derivative of a constant times a function is the constant times the derivative of the function.

    1. Let .

    2. The derivative of is .

    3. Then, apply the chain rule. Multiply by :

      1. Apply the quotient rule, which is:

        and .

        To find :

        1. Differentiate term by term:

          1. The derivative of the constant is zero.

          2. Apply the power rule: goes to

          The result is:

        To find :

        1. Differentiate term by term:

          1. The derivative of the constant is zero.

          2. Apply the power rule: goes to

          The result is:

        Now plug in to the quotient rule:

      The result of the chain rule is:

    So, the result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
        /  1      x - 1  \
(x + 1)*|----- - --------|
        |x + 1          2|
        \        (x + 1) /
--------------------------
        4*(x - 1)         
$$\frac{\left(x + 1\right) \left(- \frac{x - 1}{\left(x + 1\right)^{2}} + \frac{1}{x + 1}\right)}{4 \left(x - 1\right)}$$
The second derivative [src]
/     -1 + x\ /  1       1   \
|-1 + ------|*|----- + ------|
\     1 + x / \1 + x   -1 + x/
------------------------------
          4*(-1 + x)          
$$\frac{\left(\frac{x - 1}{x + 1} - 1\right) \left(\frac{1}{x + 1} + \frac{1}{x - 1}\right)}{4 \left(x - 1\right)}$$
The third derivative [src]
 /     -1 + x\ /   1           1              1        \ 
-|-1 + ------|*|-------- + --------- + ----------------| 
 \     1 + x / |       2           2   (1 + x)*(-1 + x)| 
               \(1 + x)    (-1 + x)                    / 
---------------------------------------------------------
                        2*(-1 + x)                       
$$- \frac{\left(\frac{x - 1}{x + 1} - 1\right) \left(\frac{1}{\left(x + 1\right)^{2}} + \frac{1}{\left(x - 1\right) \left(x + 1\right)} + \frac{1}{\left(x - 1\right)^{2}}\right)}{2 \left(x - 1\right)}$$