Mister Exam

Derivative of y=ln(x²+3x+2)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   / 2          \
log\x  + 3*x + 2/
$$\log{\left(\left(x^{2} + 3 x\right) + 2 \right)}$$
log(x^2 + 3*x + 2)
Detail solution
  1. Let .

  2. The derivative of is .

  3. Then, apply the chain rule. Multiply by :

    1. Differentiate term by term:

      1. Differentiate term by term:

        1. Apply the power rule: goes to

        2. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: goes to

          So, the result is:

        The result is:

      2. The derivative of the constant is zero.

      The result is:

    The result of the chain rule is:

  4. Now simplify:


The answer is:

The graph
The first derivative [src]
  3 + 2*x   
------------
 2          
x  + 3*x + 2
$$\frac{2 x + 3}{\left(x^{2} + 3 x\right) + 2}$$
The second derivative [src]
              2 
     (3 + 2*x)  
2 - ------------
         2      
    2 + x  + 3*x
----------------
       2        
  2 + x  + 3*x  
$$\frac{- \frac{\left(2 x + 3\right)^{2}}{x^{2} + 3 x + 2} + 2}{x^{2} + 3 x + 2}$$
3-я производная [src]
  /               2 \          
  |      (3 + 2*x)  |          
2*|-3 + ------------|*(3 + 2*x)
  |          2      |          
  \     2 + x  + 3*x/          
-------------------------------
                      2        
        /     2      \         
        \2 + x  + 3*x/         
$$\frac{2 \left(2 x + 3\right) \left(\frac{\left(2 x + 3\right)^{2}}{x^{2} + 3 x + 2} - 3\right)}{\left(x^{2} + 3 x + 2\right)^{2}}$$
The third derivative [src]
  /               2 \          
  |      (3 + 2*x)  |          
2*|-3 + ------------|*(3 + 2*x)
  |          2      |          
  \     2 + x  + 3*x/          
-------------------------------
                      2        
        /     2      \         
        \2 + x  + 3*x/         
$$\frac{2 \left(2 x + 3\right) \left(\frac{\left(2 x + 3\right)^{2}}{x^{2} + 3 x + 2} - 3\right)}{\left(x^{2} + 3 x + 2\right)^{2}}$$
The graph
Derivative of y=ln(x²+3x+2)