Mister Exam

Derivative of y=ln(x²+3x+2)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   / 2          \
log\x  + 3*x + 2/
log((x2+3x)+2)\log{\left(\left(x^{2} + 3 x\right) + 2 \right)}
log(x^2 + 3*x + 2)
Detail solution
  1. Let u=(x2+3x)+2u = \left(x^{2} + 3 x\right) + 2.

  2. The derivative of log(u)\log{\left(u \right)} is 1u\frac{1}{u}.

  3. Then, apply the chain rule. Multiply by ddx((x2+3x)+2)\frac{d}{d x} \left(\left(x^{2} + 3 x\right) + 2\right):

    1. Differentiate (x2+3x)+2\left(x^{2} + 3 x\right) + 2 term by term:

      1. Differentiate x2+3xx^{2} + 3 x term by term:

        1. Apply the power rule: x2x^{2} goes to 2x2 x

        2. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: xx goes to 11

          So, the result is: 33

        The result is: 2x+32 x + 3

      2. The derivative of the constant 22 is zero.

      The result is: 2x+32 x + 3

    The result of the chain rule is:

    2x+3(x2+3x)+2\frac{2 x + 3}{\left(x^{2} + 3 x\right) + 2}

  4. Now simplify:

    2x+3x2+3x+2\frac{2 x + 3}{x^{2} + 3 x + 2}


The answer is:

2x+3x2+3x+2\frac{2 x + 3}{x^{2} + 3 x + 2}

The graph
02468-8-6-4-2-1010-2525
The first derivative [src]
  3 + 2*x   
------------
 2          
x  + 3*x + 2
2x+3(x2+3x)+2\frac{2 x + 3}{\left(x^{2} + 3 x\right) + 2}
The second derivative [src]
              2 
     (3 + 2*x)  
2 - ------------
         2      
    2 + x  + 3*x
----------------
       2        
  2 + x  + 3*x  
(2x+3)2x2+3x+2+2x2+3x+2\frac{- \frac{\left(2 x + 3\right)^{2}}{x^{2} + 3 x + 2} + 2}{x^{2} + 3 x + 2}
3-я производная [src]
  /               2 \          
  |      (3 + 2*x)  |          
2*|-3 + ------------|*(3 + 2*x)
  |          2      |          
  \     2 + x  + 3*x/          
-------------------------------
                      2        
        /     2      \         
        \2 + x  + 3*x/         
2(2x+3)((2x+3)2x2+3x+23)(x2+3x+2)2\frac{2 \left(2 x + 3\right) \left(\frac{\left(2 x + 3\right)^{2}}{x^{2} + 3 x + 2} - 3\right)}{\left(x^{2} + 3 x + 2\right)^{2}}
The third derivative [src]
  /               2 \          
  |      (3 + 2*x)  |          
2*|-3 + ------------|*(3 + 2*x)
  |          2      |          
  \     2 + x  + 3*x/          
-------------------------------
                      2        
        /     2      \         
        \2 + x  + 3*x/         
2(2x+3)((2x+3)2x2+3x+23)(x2+3x+2)2\frac{2 \left(2 x + 3\right) \left(\frac{\left(2 x + 3\right)^{2}}{x^{2} + 3 x + 2} - 3\right)}{\left(x^{2} + 3 x + 2\right)^{2}}
The graph
Derivative of y=ln(x²+3x+2)