Mister Exam

Other calculators


y=ln^2*(2x-1)

Derivative of y=ln^2*(2x-1)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   2         
log (2*x - 1)
log(2x1)2\log{\left(2 x - 1 \right)}^{2}
log(2*x - 1)^2
Detail solution
  1. Let u=log(2x1)u = \log{\left(2 x - 1 \right)}.

  2. Apply the power rule: u2u^{2} goes to 2u2 u

  3. Then, apply the chain rule. Multiply by ddxlog(2x1)\frac{d}{d x} \log{\left(2 x - 1 \right)}:

    1. Let u=2x1u = 2 x - 1.

    2. The derivative of log(u)\log{\left(u \right)} is 1u\frac{1}{u}.

    3. Then, apply the chain rule. Multiply by ddx(2x1)\frac{d}{d x} \left(2 x - 1\right):

      1. Differentiate 2x12 x - 1 term by term:

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: xx goes to 11

          So, the result is: 22

        2. The derivative of the constant 1-1 is zero.

        The result is: 22

      The result of the chain rule is:

      22x1\frac{2}{2 x - 1}

    The result of the chain rule is:

    4log(2x1)2x1\frac{4 \log{\left(2 x - 1 \right)}}{2 x - 1}

  4. Now simplify:

    4log(2x1)2x1\frac{4 \log{\left(2 x - 1 \right)}}{2 x - 1}


The answer is:

4log(2x1)2x1\frac{4 \log{\left(2 x - 1 \right)}}{2 x - 1}

The graph
02468-8-6-4-2-1010-20002000
The first derivative [src]
4*log(2*x - 1)
--------------
   2*x - 1    
4log(2x1)2x1\frac{4 \log{\left(2 x - 1 \right)}}{2 x - 1}
The second derivative [src]
8*(1 - log(-1 + 2*x))
---------------------
               2     
     (-1 + 2*x)      
8(1log(2x1))(2x1)2\frac{8 \left(1 - \log{\left(2 x - 1 \right)}\right)}{\left(2 x - 1\right)^{2}}
The third derivative [src]
16*(-3 + 2*log(-1 + 2*x))
-------------------------
                 3       
       (-1 + 2*x)        
16(2log(2x1)3)(2x1)3\frac{16 \left(2 \log{\left(2 x - 1 \right)} - 3\right)}{\left(2 x - 1\right)^{3}}
The graph
Derivative of y=ln^2*(2x-1)