Mister Exam

Other calculators


y=tanh(1-3x)

Derivative of y=tanh(1-3x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
tanh(1 - 3*x)
$$\tanh{\left(- 3 x + 1 \right)}$$
d                
--(tanh(1 - 3*x))
dx               
$$\frac{d}{d x} \tanh{\left(- 3 x + 1 \right)}$$
The graph
The first derivative [src]
           2          
-3 + 3*tanh (-1 + 3*x)
$$3 \tanh^{2}{\left(3 x - 1 \right)} - 3$$
The second derivative [src]
    /         2          \               
-18*\-1 + tanh (-1 + 3*x)/*tanh(-1 + 3*x)
$$- 18 \left(\tanh^{2}{\left(3 x - 1 \right)} - 1\right) \tanh{\left(3 x - 1 \right)}$$
The third derivative [src]
   /         2          \ /           2          \
54*\-1 + tanh (-1 + 3*x)/*\-1 + 3*tanh (-1 + 3*x)/
$$54 \left(\tanh^{2}{\left(3 x - 1 \right)} - 1\right) \left(3 \tanh^{2}{\left(3 x - 1 \right)} - 1\right)$$
The graph
Derivative of y=tanh(1-3x)