Mister Exam

Derivative of y=tanh(1-3x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
tanh(1 - 3*x)
tanh(3x+1)\tanh{\left(- 3 x + 1 \right)}
d                
--(tanh(1 - 3*x))
dx               
ddxtanh(3x+1)\frac{d}{d x} \tanh{\left(- 3 x + 1 \right)}
The graph
02468-8-6-4-2-10105-5
The first derivative [src]
           2          
-3 + 3*tanh (-1 + 3*x)
3tanh2(3x1)33 \tanh^{2}{\left(3 x - 1 \right)} - 3
The second derivative [src]
    /         2          \               
-18*\-1 + tanh (-1 + 3*x)/*tanh(-1 + 3*x)
18(tanh2(3x1)1)tanh(3x1)- 18 \left(\tanh^{2}{\left(3 x - 1 \right)} - 1\right) \tanh{\left(3 x - 1 \right)}
The third derivative [src]
   /         2          \ /           2          \
54*\-1 + tanh (-1 + 3*x)/*\-1 + 3*tanh (-1 + 3*x)/
54(tanh2(3x1)1)(3tanh2(3x1)1)54 \left(\tanh^{2}{\left(3 x - 1 \right)} - 1\right) \left(3 \tanh^{2}{\left(3 x - 1 \right)} - 1\right)
The graph
Derivative of y=tanh(1-3x)