Mister Exam

Other calculators


y=(ln^4)*(5x^3-2x+6)

Derivative of y=(ln^4)*(5x^3-2x+6)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   4    /   3          \
log (x)*\5*x  - 2*x + 6/
$$\left(\left(5 x^{3} - 2 x\right) + 6\right) \log{\left(x \right)}^{4}$$
log(x)^4*(5*x^3 - 2*x + 6)
Detail solution
  1. Apply the product rule:

    ; to find :

    1. Let .

    2. Apply the power rule: goes to

    3. Then, apply the chain rule. Multiply by :

      1. The derivative of is .

      The result of the chain rule is:

    ; to find :

    1. Differentiate term by term:

      1. Differentiate term by term:

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: goes to

          So, the result is:

        2. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: goes to

          So, the result is:

        The result is:

      2. The derivative of the constant is zero.

      The result is:

    The result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
                            3    /   3          \
   4    /         2\   4*log (x)*\5*x  - 2*x + 6/
log (x)*\-2 + 15*x / + --------------------------
                                   x             
$$\left(15 x^{2} - 2\right) \log{\left(x \right)}^{4} + \frac{4 \left(\left(5 x^{3} - 2 x\right) + 6\right) \log{\left(x \right)}^{3}}{x}$$
The second derivative [src]
          /                               /             3\     /         2\       \
     2    |        2      2*(-3 + log(x))*\6 - 2*x + 5*x /   4*\-2 + 15*x /*log(x)|
2*log (x)*|15*x*log (x) - -------------------------------- + ---------------------|
          |                               2                            x          |
          \                              x                                        /
$$2 \left(15 x \log{\left(x \right)}^{2} + \frac{4 \left(15 x^{2} - 2\right) \log{\left(x \right)}}{x} - \frac{2 \left(\log{\left(x \right)} - 3\right) \left(5 x^{3} - 2 x + 6\right)}{x^{2}}\right) \log{\left(x \right)}^{2}$$
The third derivative [src]
  /                             /                    2   \ /             3\                   /         2\       \       
  |      3             2      2*\6 - 9*log(x) + 2*log (x)/*\6 - 2*x + 5*x /   6*(-3 + log(x))*\-2 + 15*x /*log(x)|       
2*|15*log (x) + 180*log (x) + --------------------------------------------- - -----------------------------------|*log(x)
  |                                                  3                                          2                |       
  \                                                 x                                          x                 /       
$$2 \left(15 \log{\left(x \right)}^{3} + 180 \log{\left(x \right)}^{2} - \frac{6 \left(15 x^{2} - 2\right) \left(\log{\left(x \right)} - 3\right) \log{\left(x \right)}}{x^{2}} + \frac{2 \left(5 x^{3} - 2 x + 6\right) \left(2 \log{\left(x \right)}^{2} - 9 \log{\left(x \right)} + 6\right)}{x^{3}}\right) \log{\left(x \right)}$$
The graph
Derivative of y=(ln^4)*(5x^3-2x+6)