Detail solution
-
Apply the product rule:
; to find :
-
Apply the power rule: goes to
; to find :
-
Rewrite the function to be differentiated:
-
Apply the quotient rule, which is:
and .
To find :
-
The derivative of sine is cosine:
To find :
-
The derivative of cosine is negative sine:
Now plug in to the quotient rule:
The result is:
Now simplify:
The answer is:
The first derivative
[src]
2 / 2 \
x *\1 + tan (x)/ + 2*x*tan(x)
$$x^{2} \left(\tan^{2}{\left(x \right)} + 1\right) + 2 x \tan{\left(x \right)}$$
The second derivative
[src]
/ / 2 \ 2 / 2 \ \
2*\2*x*\1 + tan (x)/ + x *\1 + tan (x)/*tan(x) + tan(x)/
$$2 \left(x^{2} \left(\tan^{2}{\left(x \right)} + 1\right) \tan{\left(x \right)} + 2 x \left(\tan^{2}{\left(x \right)} + 1\right) + \tan{\left(x \right)}\right)$$
The third derivative
[src]
/ 2 2 / 2 \ / 2 \ / 2 \ \
2*\3 + 3*tan (x) + x *\1 + tan (x)/*\1 + 3*tan (x)/ + 6*x*\1 + tan (x)/*tan(x)/
$$2 \left(x^{2} \left(\tan^{2}{\left(x \right)} + 1\right) \left(3 \tan^{2}{\left(x \right)} + 1\right) + 6 x \left(\tan^{2}{\left(x \right)} + 1\right) \tan{\left(x \right)} + 3 \tan^{2}{\left(x \right)} + 3\right)$$