Mister Exam

Other calculators


3*(2-x)^6

Derivative of 3*(2-x)^6

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
         6
3*(2 - x) 
3(2x)63 \left(2 - x\right)^{6}
3*(2 - x)^6
Detail solution
  1. The derivative of a constant times a function is the constant times the derivative of the function.

    1. Let u=2xu = 2 - x.

    2. Apply the power rule: u6u^{6} goes to 6u56 u^{5}

    3. Then, apply the chain rule. Multiply by ddx(2x)\frac{d}{d x} \left(2 - x\right):

      1. Differentiate 2x2 - x term by term:

        1. The derivative of the constant 22 is zero.

        2. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: xx goes to 11

          So, the result is: 1-1

        The result is: 1-1

      The result of the chain rule is:

      6(2x)5- 6 \left(2 - x\right)^{5}

    So, the result is: 18(2x)5- 18 \left(2 - x\right)^{5}

  2. Now simplify:

    18(x2)518 \left(x - 2\right)^{5}


The answer is:

18(x2)518 \left(x - 2\right)^{5}

The graph
02468-8-6-4-2-1010-1000000010000000
The first derivative [src]
           5
-18*(2 - x) 
18(2x)5- 18 \left(2 - x\right)^{5}
The second derivative [src]
           4
90*(-2 + x) 
90(x2)490 \left(x - 2\right)^{4}
The third derivative [src]
            3
360*(-2 + x) 
360(x2)3360 \left(x - 2\right)^{3}
The graph
Derivative of 3*(2-x)^6