Mister Exam

Other calculators


y=ln(sqrt(5x)-1)

Derivative of y=ln(sqrt(5x)-1)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   /  _____    \
log\\/ 5*x  - 1/
log(5x1)\log{\left(\sqrt{5 x} - 1 \right)}
log(sqrt(5*x) - 1)
Detail solution
  1. Let u=5x1u = \sqrt{5 x} - 1.

  2. The derivative of log(u)\log{\left(u \right)} is 1u\frac{1}{u}.

  3. Then, apply the chain rule. Multiply by ddx(5x1)\frac{d}{d x} \left(\sqrt{5 x} - 1\right):

    1. Differentiate 5x1\sqrt{5 x} - 1 term by term:

      1. Let u=5xu = 5 x.

      2. Apply the power rule: u\sqrt{u} goes to 12u\frac{1}{2 \sqrt{u}}

      3. Then, apply the chain rule. Multiply by ddx5x\frac{d}{d x} 5 x:

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: xx goes to 11

          So, the result is: 55

        The result of the chain rule is:

        52x\frac{\sqrt{5}}{2 \sqrt{x}}

      4. The derivative of the constant 1-1 is zero.

      The result is: 52x\frac{\sqrt{5}}{2 \sqrt{x}}

    The result of the chain rule is:

    52x(5x1)\frac{\sqrt{5}}{2 \sqrt{x} \left(\sqrt{5 x} - 1\right)}

  4. Now simplify:

    52(x+5x)\frac{\sqrt{5}}{2 \left(- \sqrt{x} + \sqrt{5} x\right)}


The answer is:

52(x+5x)\frac{\sqrt{5}}{2 \left(- \sqrt{x} + \sqrt{5} x\right)}

The graph
02468-8-6-4-2-1010-2525
The first derivative [src]
          ___        
        \/ 5         
---------------------
    ___ /  _____    \
2*\/ x *\\/ 5*x  - 1/
52x(5x1)\frac{\sqrt{5}}{2 \sqrt{x} \left(\sqrt{5 x} - 1\right)}
The second derivative [src]
 /  ___                       \ 
 |\/ 5             5          | 
-|----- + --------------------| 
 |  3/2     /       ___   ___\| 
 \ x      x*\-1 + \/ 5 *\/ x // 
--------------------------------
        /       ___   ___\      
      4*\-1 + \/ 5 *\/ x /      
5x(5x1)+5x324(5x1)- \frac{\frac{5}{x \left(\sqrt{5} \sqrt{x} - 1\right)} + \frac{\sqrt{5}}{x^{\frac{3}{2}}}}{4 \left(\sqrt{5} \sqrt{x} - 1\right)}
The third derivative [src]
    ___                                        ___        
3*\/ 5              15                    10*\/ 5         
------- + --------------------- + ------------------------
   5/2     2 /       ___   ___\                          2
  x       x *\-1 + \/ 5 *\/ x /    3/2 /       ___   ___\ 
                                  x   *\-1 + \/ 5 *\/ x / 
----------------------------------------------------------
                     /       ___   ___\                   
                   8*\-1 + \/ 5 *\/ x /                   
15x2(5x1)+105x32(5x1)2+35x528(5x1)\frac{\frac{15}{x^{2} \left(\sqrt{5} \sqrt{x} - 1\right)} + \frac{10 \sqrt{5}}{x^{\frac{3}{2}} \left(\sqrt{5} \sqrt{x} - 1\right)^{2}} + \frac{3 \sqrt{5}}{x^{\frac{5}{2}}}}{8 \left(\sqrt{5} \sqrt{x} - 1\right)}
The graph
Derivative of y=ln(sqrt(5x)-1)