log(sin(x) + cos(x))
d --(log(sin(x) + cos(x))) dx
Let .
The derivative of is .
Then, apply the chain rule. Multiply by :
Differentiate term by term:
The derivative of sine is cosine:
The derivative of cosine is negative sine:
The result is:
The result of the chain rule is:
Now simplify:
The answer is:
-sin(x) + cos(x) ---------------- sin(x) + cos(x)
/ 2\ | (-cos(x) + sin(x)) | -|1 + -------------------| | 2| \ (cos(x) + sin(x)) /
/ 2\
| (-cos(x) + sin(x)) |
-2*|1 + -------------------|*(-cos(x) + sin(x))
| 2|
\ (cos(x) + sin(x)) /
-----------------------------------------------
cos(x) + sin(x)