Mister Exam

Derivative of y=ln(sinx+cosx)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
log(sin(x) + cos(x))
$$\log{\left(\sin{\left(x \right)} + \cos{\left(x \right)} \right)}$$
d                       
--(log(sin(x) + cos(x)))
dx                      
$$\frac{d}{d x} \log{\left(\sin{\left(x \right)} + \cos{\left(x \right)} \right)}$$
Detail solution
  1. Let .

  2. The derivative of is .

  3. Then, apply the chain rule. Multiply by :

    1. Differentiate term by term:

      1. The derivative of sine is cosine:

      2. The derivative of cosine is negative sine:

      The result is:

    The result of the chain rule is:

  4. Now simplify:


The answer is:

The graph
The first derivative [src]
-sin(x) + cos(x)
----------------
sin(x) + cos(x) 
$$\frac{- \sin{\left(x \right)} + \cos{\left(x \right)}}{\sin{\left(x \right)} + \cos{\left(x \right)}}$$
The second derivative [src]
 /                      2\
 |    (-cos(x) + sin(x)) |
-|1 + -------------------|
 |                      2|
 \     (cos(x) + sin(x)) /
$$- (\frac{\left(\sin{\left(x \right)} - \cos{\left(x \right)}\right)^{2}}{\left(\sin{\left(x \right)} + \cos{\left(x \right)}\right)^{2}} + 1)$$
The third derivative [src]
   /                      2\                   
   |    (-cos(x) + sin(x)) |                   
-2*|1 + -------------------|*(-cos(x) + sin(x))
   |                      2|                   
   \     (cos(x) + sin(x)) /                   
-----------------------------------------------
                cos(x) + sin(x)                
$$- \frac{2 \left(\frac{\left(\sin{\left(x \right)} - \cos{\left(x \right)}\right)^{2}}{\left(\sin{\left(x \right)} + \cos{\left(x \right)}\right)^{2}} + 1\right) \left(\sin{\left(x \right)} - \cos{\left(x \right)}\right)}{\sin{\left(x \right)} + \cos{\left(x \right)}}$$
The graph
Derivative of y=ln(sinx+cosx)