Mister Exam

Other calculators


y=ln(1/x+sqrt(1+x^2)/x^2)

Derivative of y=ln(1/x+sqrt(1+x^2)/x^2)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   /         ________\
   |        /      2 |
   |  1   \/  1 + x  |
log|1*- + -----------|
   |  x         2    |
   \           x     /
$$\log{\left(\frac{\sqrt{x^{2} + 1}}{x^{2}} + 1 \cdot \frac{1}{x} \right)}$$
  /   /         ________\\
  |   |        /      2 ||
d |   |  1   \/  1 + x  ||
--|log|1*- + -----------||
dx|   |  x         2    ||
  \   \           x     //
$$\frac{d}{d x} \log{\left(\frac{\sqrt{x^{2} + 1}}{x^{2}} + 1 \cdot \frac{1}{x} \right)}$$
Detail solution
  1. Let .

  2. The derivative of is .

  3. Then, apply the chain rule. Multiply by :

    1. Differentiate term by term:

      1. Apply the quotient rule, which is:

        and .

        To find :

        1. The derivative of the constant is zero.

        To find :

        1. Apply the power rule: goes to

        Now plug in to the quotient rule:

      2. Apply the quotient rule, which is:

        and .

        To find :

        1. Let .

        2. Apply the power rule: goes to

        3. Then, apply the chain rule. Multiply by :

          1. Differentiate term by term:

            1. The derivative of the constant is zero.

            2. Apply the power rule: goes to

            The result is:

          The result of the chain rule is:

        To find :

        1. Apply the power rule: goes to

        Now plug in to the quotient rule:

      The result is:

    The result of the chain rule is:

  4. Now simplify:


The answer is:

The graph
The first derivative [src]
            ________                 
           /      2                  
  1    2*\/  1 + x           x       
- -- - ------------- + --------------
   2          3              ________
  x          x          2   /      2 
                       x *\/  1 + x  
-------------------------------------
                   ________          
                  /      2           
            1   \/  1 + x            
          1*- + -----------          
            x         2              
                     x               
$$\frac{- \frac{1}{x^{2}} + \frac{x}{x^{2} \sqrt{x^{2} + 1}} - \frac{2 \sqrt{x^{2} + 1}}{x^{3}}}{\frac{\sqrt{x^{2} + 1}}{x^{2}} + 1 \cdot \frac{1}{x}}$$
The second derivative [src]
 /                                                                                         2\ 
 |                                                        /                       ________\ | 
 |                                                        |                      /      2 | | 
 |                                                        |1        1        2*\/  1 + x  | | 
 |                                                        |- - ----------- + -------------| | 
 |  /                        ________                 \   |x      ________          2     | | 
 |  |                       /      2                  |   |      /      2          x      | | 
 |  |     1        2    6*\/  1 + x           3       |   \    \/  1 + x                  / | 
-|x*|----------- - -- - ------------- + --------------| + ----------------------------------| 
 |  |        3/2    3          4              ________|                   ________          | 
 |  |/     2\      x          x          2   /      2 |                  /      2           | 
 |  \\1 + x /                           x *\/  1 + x  /                \/  1 + x            | 
 |                                                                 1 + -----------          | 
 \                                                                          x               / 
----------------------------------------------------------------------------------------------
                                              ________                                        
                                             /      2                                         
                                           \/  1 + x                                          
                                       1 + -----------                                        
                                                x                                             
$$- \frac{x \left(\frac{1}{\left(x^{2} + 1\right)^{\frac{3}{2}}} + \frac{3}{x^{2} \sqrt{x^{2} + 1}} - \frac{2}{x^{3}} - \frac{6 \sqrt{x^{2} + 1}}{x^{4}}\right) + \frac{\left(- \frac{1}{\sqrt{x^{2} + 1}} + \frac{1}{x} + \frac{2 \sqrt{x^{2} + 1}}{x^{2}}\right)^{2}}{1 + \frac{\sqrt{x^{2} + 1}}{x}}}{1 + \frac{\sqrt{x^{2} + 1}}{x}}$$
The third derivative [src]
                                     3                                                                                                                                                                        
    /                       ________\                                                                                    /                       ________\ /                        ________                 \
    |                      /      2 |                                                                                    |                      /      2 | |                       /      2                  |
    |1        1        2*\/  1 + x  |                                                                                    |1        1        2*\/  1 + x  | |     1        2    6*\/  1 + x           3       |
  2*|- - ----------- + -------------|                                                                                3*x*|- - ----------- + -------------|*|----------- - -- - ------------- + --------------|
    |x      ________          2     |        /                                          ________                 \       |x      ________          2     | |        3/2    3          4              ________|
    |      /      2          x      |        |                                         /      2                  |       |      /      2          x      | |/     2\      x          x          2   /      2 |
    \    \/  1 + x                  /        |  2         x              1         8*\/  1 + x           4       |       \    \/  1 + x                  / \\1 + x /                           x *\/  1 + x  /
- ------------------------------------ + 3*x*|- -- + ----------- + ------------- - ------------- + --------------| - -----------------------------------------------------------------------------------------
                            2                |   4           5/2             3/2          5              ________|                                               ________                                     
           /       ________\                 |  x    /     2\        /     2\            x          3   /      2 |                                              /      2                                      
           |      /      2 |                 \       \1 + x /      x*\1 + x /                      x *\/  1 + x  /                                            \/  1 + x                                       
           |    \/  1 + x  |                                                                                                                              1 + -----------                                     
           |1 + -----------|                                                                                                                                       x                                          
           \         x     /                                                                                                                                                                                  
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
                                                                                                      ________                                                                                                
                                                                                                     /      2                                                                                                 
                                                                                                   \/  1 + x                                                                                                  
                                                                                               1 + -----------                                                                                                
                                                                                                        x                                                                                                     
$$\frac{3 x \left(\frac{x}{\left(x^{2} + 1\right)^{\frac{5}{2}}} + \frac{1}{x \left(x^{2} + 1\right)^{\frac{3}{2}}} + \frac{4}{x^{3} \sqrt{x^{2} + 1}} - \frac{2}{x^{4}} - \frac{8 \sqrt{x^{2} + 1}}{x^{5}}\right) - \frac{3 x \left(- \frac{1}{\sqrt{x^{2} + 1}} + \frac{1}{x} + \frac{2 \sqrt{x^{2} + 1}}{x^{2}}\right) \left(\frac{1}{\left(x^{2} + 1\right)^{\frac{3}{2}}} + \frac{3}{x^{2} \sqrt{x^{2} + 1}} - \frac{2}{x^{3}} - \frac{6 \sqrt{x^{2} + 1}}{x^{4}}\right)}{1 + \frac{\sqrt{x^{2} + 1}}{x}} - \frac{2 \left(- \frac{1}{\sqrt{x^{2} + 1}} + \frac{1}{x} + \frac{2 \sqrt{x^{2} + 1}}{x^{2}}\right)^{3}}{\left(1 + \frac{\sqrt{x^{2} + 1}}{x}\right)^{2}}}{1 + \frac{\sqrt{x^{2} + 1}}{x}}$$
The graph
Derivative of y=ln(1/x+sqrt(1+x^2)/x^2)