Mister Exam

Other calculators


y=ln*tg((2x+1)/4)

Derivative of y=ln*tg((2x+1)/4)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
          /2*x + 1\
log(x)*tan|-------|
          \   4   /
$$\log{\left(x \right)} \tan{\left(\frac{2 x + 1}{4} \right)}$$
log(x)*tan((2*x + 1)/4)
Detail solution
  1. Apply the product rule:

    ; to find :

    1. The derivative of is .

    ; to find :

    1. Rewrite the function to be differentiated:

    2. Apply the quotient rule, which is:

      and .

      To find :

      1. Let .

      2. The derivative of sine is cosine:

      3. Then, apply the chain rule. Multiply by :

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Differentiate term by term:

            1. The derivative of a constant times a function is the constant times the derivative of the function.

              1. Apply the power rule: goes to

              So, the result is:

            2. The derivative of the constant is zero.

            The result is:

          So, the result is:

        The result of the chain rule is:

      To find :

      1. Let .

      2. The derivative of cosine is negative sine:

      3. Then, apply the chain rule. Multiply by :

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Differentiate term by term:

            1. The derivative of a constant times a function is the constant times the derivative of the function.

              1. Apply the power rule: goes to

              So, the result is:

            2. The derivative of the constant is zero.

            The result is:

          So, the result is:

        The result of the chain rule is:

      Now plug in to the quotient rule:

    The result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
   /2*x + 1\   /       2/2*x + 1\\       
tan|-------|   |    tan |-------||       
   \   4   /   |1       \   4   /|       
------------ + |- + -------------|*log(x)
     x         \2         2      /       
$$\left(\frac{\tan^{2}{\left(\frac{2 x + 1}{4} \right)}}{2} + \frac{1}{2}\right) \log{\left(x \right)} + \frac{\tan{\left(\frac{2 x + 1}{4} \right)}}{x}$$
The second derivative [src]
       2/1 + 2*x\      /1 + 2*x\   /       2/1 + 2*x\\           /1 + 2*x\
1 + tan |-------|   tan|-------|   |1 + tan |-------||*log(x)*tan|-------|
        \   4   /      \   4   /   \        \   4   //           \   4   /
----------------- - ------------ + ---------------------------------------
        x                 2                           2                   
                         x                                                
$$\frac{\left(\tan^{2}{\left(\frac{2 x + 1}{4} \right)} + 1\right) \log{\left(x \right)} \tan{\left(\frac{2 x + 1}{4} \right)}}{2} + \frac{\tan^{2}{\left(\frac{2 x + 1}{4} \right)} + 1}{x} - \frac{\tan{\left(\frac{2 x + 1}{4} \right)}}{x^{2}}$$
The third derivative [src]
     /1 + 2*x\     /       2/1 + 2*x\\   /       2/1 + 2*x\\ /         2/1 + 2*x\\            /       2/1 + 2*x\\    /1 + 2*x\
2*tan|-------|   3*|1 + tan |-------||   |1 + tan |-------||*|1 + 3*tan |-------||*log(x)   3*|1 + tan |-------||*tan|-------|
     \   4   /     \        \   4   //   \        \   4   // \          \   4   //            \        \   4   //    \   4   /
-------------- - --------------------- + ------------------------------------------------ + ----------------------------------
       3                     2                                  4                                          2*x                
      x                   2*x                                                                                                 
$$\frac{\left(\tan^{2}{\left(\frac{2 x + 1}{4} \right)} + 1\right) \left(3 \tan^{2}{\left(\frac{2 x + 1}{4} \right)} + 1\right) \log{\left(x \right)}}{4} + \frac{3 \left(\tan^{2}{\left(\frac{2 x + 1}{4} \right)} + 1\right) \tan{\left(\frac{2 x + 1}{4} \right)}}{2 x} - \frac{3 \left(\tan^{2}{\left(\frac{2 x + 1}{4} \right)} + 1\right)}{2 x^{2}} + \frac{2 \tan{\left(\frac{2 x + 1}{4} \right)}}{x^{3}}$$
The graph
Derivative of y=ln*tg((2x+1)/4)