The first derivative
[src]
2
1 - tanh (x)
------------
tanh(x)
$$\frac{1 - \tanh^{2}{\left(x \right)}}{\tanh{\left(x \right)}}$$
The second derivative
[src]
2
/ 2 \
2 \-1 + tanh (x)/
-2 + 2*tanh (x) - ----------------
2
tanh (x)
$$- \frac{\left(\tanh^{2}{\left(x \right)} - 1\right)^{2}}{\tanh^{2}{\left(x \right)}} + 2 \tanh^{2}{\left(x \right)} - 2$$
The third derivative
[src]
/ 2 \
| / 2 \ / 2 \|
/ 2 \ | \-1 + tanh (x)/ 2*\-1 + tanh (x)/|
2*\-1 + tanh (x)/*|-2*tanh(x) - ---------------- + -----------------|
| 3 tanh(x) |
\ tanh (x) /
$$2 \left(\tanh^{2}{\left(x \right)} - 1\right) \left(- \frac{\left(\tanh^{2}{\left(x \right)} - 1\right)^{2}}{\tanh^{3}{\left(x \right)}} + \frac{2 \left(\tanh^{2}{\left(x \right)} - 1\right)}{\tanh{\left(x \right)}} - 2 \tanh{\left(x \right)}\right)$$