The first derivative
[src]
2
2 - 2*tanh (x)
--------------
tanh(x)
$$\frac{- 2 \tanh^{2}{\left(x \right)} + 2}{\tanh{\left(x \right)}}$$
The second derivative
[src]
/ 2\
| / 2 \ |
| 2 \-1 + tanh (x)/ |
2*|-2 + 2*tanh (x) - ----------------|
| 2 |
\ tanh (x) /
$$2 \left(2 \tanh^{2}{\left(x \right)} - \frac{\left(\tanh^{2}{\left(x \right)} - 1\right)^{2}}{\tanh^{2}{\left(x \right)}} - 2\right)$$
The third derivative
[src]
/ 2 \
| / 2 \ / 2 \|
/ 2 \ | \-1 + tanh (x)/ 2*\-1 + tanh (x)/|
4*\-1 + tanh (x)/*|-2*tanh(x) - ---------------- + -----------------|
| 3 tanh(x) |
\ tanh (x) /
$$4 \left(\tanh^{2}{\left(x \right)} - 1\right) \left(- 2 \tanh{\left(x \right)} + \frac{2 \left(\tanh^{2}{\left(x \right)} - 1\right)}{\tanh{\left(x \right)}} - \frac{\left(\tanh^{2}{\left(x \right)} - 1\right)^{2}}{\tanh^{3}{\left(x \right)}}\right)$$