Mister Exam

Other calculators


ln(tanhx^2)

Derivative of ln(tanhx^2)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   /    2   \
log\tanh (x)/
$$\log{\left(\tanh^{2}{\left(x \right)} \right)}$$
d /   /    2   \\
--\log\tanh (x)//
dx               
$$\frac{d}{d x} \log{\left(\tanh^{2}{\left(x \right)} \right)}$$
The graph
The first derivative [src]
          2   
2 - 2*tanh (x)
--------------
   tanh(x)    
$$\frac{- 2 \tanh^{2}{\left(x \right)} + 2}{\tanh{\left(x \right)}}$$
The second derivative [src]
  /                                 2\
  |                  /         2   \ |
  |           2      \-1 + tanh (x)/ |
2*|-2 + 2*tanh (x) - ----------------|
  |                          2       |
  \                      tanh (x)    /
$$2 \left(2 \tanh^{2}{\left(x \right)} - \frac{\left(\tanh^{2}{\left(x \right)} - 1\right)^{2}}{\tanh^{2}{\left(x \right)}} - 2\right)$$
The third derivative [src]
                  /                            2                    \
                  |             /         2   \      /         2   \|
  /         2   \ |             \-1 + tanh (x)/    2*\-1 + tanh (x)/|
4*\-1 + tanh (x)/*|-2*tanh(x) - ---------------- + -----------------|
                  |                     3               tanh(x)     |
                  \                 tanh (x)                        /
$$4 \left(\tanh^{2}{\left(x \right)} - 1\right) \left(- 2 \tanh{\left(x \right)} + \frac{2 \left(\tanh^{2}{\left(x \right)} - 1\right)}{\tanh{\left(x \right)}} - \frac{\left(\tanh^{2}{\left(x \right)} - 1\right)^{2}}{\tanh^{3}{\left(x \right)}}\right)$$
The graph
Derivative of ln(tanhx^2)