Mister Exam

Derivative of (ln(x+8)-3x+2)/x

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
log(x + 8) - 3*x + 2
--------------------
         x          
$$\frac{\left(- 3 x + \log{\left(x + 8 \right)}\right) + 2}{x}$$
(log(x + 8) - 3*x + 2)/x
Detail solution
  1. Apply the quotient rule, which is:

    and .

    To find :

    1. Differentiate term by term:

      1. The derivative of the constant is zero.

      2. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: goes to

        So, the result is:

      3. Let .

      4. The derivative of is .

      5. Then, apply the chain rule. Multiply by :

        1. Differentiate term by term:

          1. Apply the power rule: goes to

          2. The derivative of the constant is zero.

          The result is:

        The result of the chain rule is:

      The result is:

    To find :

    1. Apply the power rule: goes to

    Now plug in to the quotient rule:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
       1                         
-3 + -----                       
     x + 8   log(x + 8) - 3*x + 2
---------- - --------------------
    x                  2         
                      x          
$$\frac{-3 + \frac{1}{x + 8}}{x} - \frac{\left(- 3 x + \log{\left(x + 8 \right)}\right) + 2}{x^{2}}$$
The second derivative [src]
               /      1  \                           
             2*|3 - -----|                           
     1         \    8 + x/   2*(2 - 3*x + log(8 + x))
- -------- + ------------- + ------------------------
         2         x                     2           
  (8 + x)                               x            
-----------------------------------------------------
                          x                          
$$\frac{- \frac{1}{\left(x + 8\right)^{2}} + \frac{2 \left(3 - \frac{1}{x + 8}\right)}{x} + \frac{2 \left(- 3 x + \log{\left(x + 8 \right)} + 2\right)}{x^{2}}}{x}$$
The third derivative [src]
                                        /      1  \             
                                      6*|3 - -----|             
   2       6*(2 - 3*x + log(8 + x))     \    8 + x/       3     
-------- - ------------------------ - ------------- + ----------
       3               3                     2                 2
(8 + x)               x                     x         x*(8 + x) 
----------------------------------------------------------------
                               x                                
$$\frac{\frac{2}{\left(x + 8\right)^{3}} + \frac{3}{x \left(x + 8\right)^{2}} - \frac{6 \left(3 - \frac{1}{x + 8}\right)}{x^{2}} - \frac{6 \left(- 3 x + \log{\left(x + 8 \right)} + 2\right)}{x^{3}}}{x}$$
The graph
Derivative of (ln(x+8)-3x+2)/x