Mister Exam

Other calculators


y=(ln8x*cos10x)/(5x)

Derivative of y=(ln8x*cos10x)/(5x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
log(8*x)*cos(10*x)
------------------
       5*x        
$$\frac{\log{\left(8 x \right)} \cos{\left(10 x \right)}}{5 x}$$
d /log(8*x)*cos(10*x)\
--|------------------|
dx\       5*x        /
$$\frac{d}{d x} \frac{\log{\left(8 x \right)} \cos{\left(10 x \right)}}{5 x}$$
Detail solution
  1. Apply the quotient rule, which is:

    and .

    To find :

    1. Apply the product rule:

      ; to find :

      1. Let .

      2. The derivative of cosine is negative sine:

      3. Then, apply the chain rule. Multiply by :

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: goes to

          So, the result is:

        The result of the chain rule is:

      ; to find :

      1. Let .

      2. The derivative of is .

      3. Then, apply the chain rule. Multiply by :

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: goes to

          So, the result is:

        The result of the chain rule is:

      The result is:

    To find :

    1. The derivative of a constant times a function is the constant times the derivative of the function.

      1. Apply the power rule: goes to

      So, the result is:

    Now plug in to the quotient rule:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
 1                                                            
---*cos(10*x)                                                 
5*x                 1                       cos(10*x)*log(8*x)
------------- - 10*---*log(8*x)*sin(10*x) - ------------------
      x            5*x                                2       
                                                   5*x        
$$- 10 \cdot \frac{1}{5 x} \log{\left(8 x \right)} \sin{\left(10 x \right)} + \frac{\frac{1}{5 x} \cos{\left(10 x \right)}}{x} - \frac{\log{\left(8 x \right)} \cos{\left(10 x \right)}}{5 x^{2}}$$
The second derivative [src]
                         4*sin(10*x)   3*cos(10*x)   4*log(8*x)*sin(10*x)   2*cos(10*x)*log(8*x)
-20*cos(10*x)*log(8*x) - ----------- - ----------- + -------------------- + --------------------
                              x               2               x                        2        
                                           5*x                                      5*x         
------------------------------------------------------------------------------------------------
                                               x                                                
$$\frac{- 20 \log{\left(8 x \right)} \cos{\left(10 x \right)} + \frac{4 \log{\left(8 x \right)} \sin{\left(10 x \right)}}{x} - \frac{4 \sin{\left(10 x \right)}}{x} + \frac{2 \log{\left(8 x \right)} \cos{\left(10 x \right)}}{5 x^{2}} - \frac{3 \cos{\left(10 x \right)}}{5 x^{2}}}{x}$$
The third derivative [src]
  60*cos(10*x)   18*sin(10*x)                            11*cos(10*x)   12*log(8*x)*sin(10*x)   60*cos(10*x)*log(8*x)   6*cos(10*x)*log(8*x)
- ------------ + ------------ + 200*log(8*x)*sin(10*x) + ------------ - --------------------- + --------------------- - --------------------
       x               2                                        3                  2                      x                        3        
                      x                                      5*x                  x                                             5*x         
--------------------------------------------------------------------------------------------------------------------------------------------
                                                                     x                                                                      
$$\frac{200 \log{\left(8 x \right)} \sin{\left(10 x \right)} + \frac{60 \log{\left(8 x \right)} \cos{\left(10 x \right)}}{x} - \frac{60 \cos{\left(10 x \right)}}{x} - \frac{12 \log{\left(8 x \right)} \sin{\left(10 x \right)}}{x^{2}} + \frac{18 \sin{\left(10 x \right)}}{x^{2}} - \frac{6 \log{\left(8 x \right)} \cos{\left(10 x \right)}}{5 x^{3}} + \frac{11 \cos{\left(10 x \right)}}{5 x^{3}}}{x}$$
The graph
Derivative of y=(ln8x*cos10x)/(5x)