Mister Exam

Other calculators


y=(ln8x*cos10x)/(5x)

Derivative of y=(ln8x*cos10x)/(5x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
log(8*x)*cos(10*x)
------------------
       5*x        
log(8x)cos(10x)5x\frac{\log{\left(8 x \right)} \cos{\left(10 x \right)}}{5 x}
d /log(8*x)*cos(10*x)\
--|------------------|
dx\       5*x        /
ddxlog(8x)cos(10x)5x\frac{d}{d x} \frac{\log{\left(8 x \right)} \cos{\left(10 x \right)}}{5 x}
Detail solution
  1. Apply the quotient rule, which is:

    ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)g2(x)\frac{d}{d x} \frac{f{\left(x \right)}}{g{\left(x \right)}} = \frac{- f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}}{g^{2}{\left(x \right)}}

    f(x)=log(8x)cos(10x)f{\left(x \right)} = \log{\left(8 x \right)} \cos{\left(10 x \right)} and g(x)=5xg{\left(x \right)} = 5 x.

    To find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

    1. Apply the product rule:

      ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)\frac{d}{d x} f{\left(x \right)} g{\left(x \right)} = f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}

      f(x)=cos(10x)f{\left(x \right)} = \cos{\left(10 x \right)}; to find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

      1. Let u=10xu = 10 x.

      2. The derivative of cosine is negative sine:

        dducos(u)=sin(u)\frac{d}{d u} \cos{\left(u \right)} = - \sin{\left(u \right)}

      3. Then, apply the chain rule. Multiply by ddx10x\frac{d}{d x} 10 x:

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: xx goes to 11

          So, the result is: 1010

        The result of the chain rule is:

        10sin(10x)- 10 \sin{\left(10 x \right)}

      g(x)=log(8x)g{\left(x \right)} = \log{\left(8 x \right)}; to find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

      1. Let u=8xu = 8 x.

      2. The derivative of log(u)\log{\left(u \right)} is 1u\frac{1}{u}.

      3. Then, apply the chain rule. Multiply by ddx8x\frac{d}{d x} 8 x:

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: xx goes to 11

          So, the result is: 88

        The result of the chain rule is:

        1x\frac{1}{x}

      The result is: 10log(8x)sin(10x)+cos(10x)x- 10 \log{\left(8 x \right)} \sin{\left(10 x \right)} + \frac{\cos{\left(10 x \right)}}{x}

    To find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

    1. The derivative of a constant times a function is the constant times the derivative of the function.

      1. Apply the power rule: xx goes to 11

      So, the result is: 55

    Now plug in to the quotient rule:

    5x(10log(8x)sin(10x)+cos(10x)x)5log(8x)cos(10x)25x2\frac{5 x \left(- 10 \log{\left(8 x \right)} \sin{\left(10 x \right)} + \frac{\cos{\left(10 x \right)}}{x}\right) - 5 \log{\left(8 x \right)} \cos{\left(10 x \right)}}{25 x^{2}}

  2. Now simplify:

    10xlog(8x)sin(10x)log(8x)cos(10x)+cos(10x)5x2\frac{- 10 x \log{\left(8 x \right)} \sin{\left(10 x \right)} - \log{\left(8 x \right)} \cos{\left(10 x \right)} + \cos{\left(10 x \right)}}{5 x^{2}}


The answer is:

10xlog(8x)sin(10x)log(8x)cos(10x)+cos(10x)5x2\frac{- 10 x \log{\left(8 x \right)} \sin{\left(10 x \right)} - \log{\left(8 x \right)} \cos{\left(10 x \right)} + \cos{\left(10 x \right)}}{5 x^{2}}

The graph
02468-8-6-4-2-1010-2020
The first derivative [src]
 1                                                            
---*cos(10*x)                                                 
5*x                 1                       cos(10*x)*log(8*x)
------------- - 10*---*log(8*x)*sin(10*x) - ------------------
      x            5*x                                2       
                                                   5*x        
1015xlog(8x)sin(10x)+15xcos(10x)xlog(8x)cos(10x)5x2- 10 \cdot \frac{1}{5 x} \log{\left(8 x \right)} \sin{\left(10 x \right)} + \frac{\frac{1}{5 x} \cos{\left(10 x \right)}}{x} - \frac{\log{\left(8 x \right)} \cos{\left(10 x \right)}}{5 x^{2}}
The second derivative [src]
                         4*sin(10*x)   3*cos(10*x)   4*log(8*x)*sin(10*x)   2*cos(10*x)*log(8*x)
-20*cos(10*x)*log(8*x) - ----------- - ----------- + -------------------- + --------------------
                              x               2               x                        2        
                                           5*x                                      5*x         
------------------------------------------------------------------------------------------------
                                               x                                                
20log(8x)cos(10x)+4log(8x)sin(10x)x4sin(10x)x+2log(8x)cos(10x)5x23cos(10x)5x2x\frac{- 20 \log{\left(8 x \right)} \cos{\left(10 x \right)} + \frac{4 \log{\left(8 x \right)} \sin{\left(10 x \right)}}{x} - \frac{4 \sin{\left(10 x \right)}}{x} + \frac{2 \log{\left(8 x \right)} \cos{\left(10 x \right)}}{5 x^{2}} - \frac{3 \cos{\left(10 x \right)}}{5 x^{2}}}{x}
The third derivative [src]
  60*cos(10*x)   18*sin(10*x)                            11*cos(10*x)   12*log(8*x)*sin(10*x)   60*cos(10*x)*log(8*x)   6*cos(10*x)*log(8*x)
- ------------ + ------------ + 200*log(8*x)*sin(10*x) + ------------ - --------------------- + --------------------- - --------------------
       x               2                                        3                  2                      x                        3        
                      x                                      5*x                  x                                             5*x         
--------------------------------------------------------------------------------------------------------------------------------------------
                                                                     x                                                                      
200log(8x)sin(10x)+60log(8x)cos(10x)x60cos(10x)x12log(8x)sin(10x)x2+18sin(10x)x26log(8x)cos(10x)5x3+11cos(10x)5x3x\frac{200 \log{\left(8 x \right)} \sin{\left(10 x \right)} + \frac{60 \log{\left(8 x \right)} \cos{\left(10 x \right)}}{x} - \frac{60 \cos{\left(10 x \right)}}{x} - \frac{12 \log{\left(8 x \right)} \sin{\left(10 x \right)}}{x^{2}} + \frac{18 \sin{\left(10 x \right)}}{x^{2}} - \frac{6 \log{\left(8 x \right)} \cos{\left(10 x \right)}}{5 x^{3}} + \frac{11 \cos{\left(10 x \right)}}{5 x^{3}}}{x}
The graph
Derivative of y=(ln8x*cos10x)/(5x)