x 2 e *log (x)
d / x 2 \ --\e *log (x)/ dx
Apply the product rule:
; to find :
The derivative of is itself.
; to find :
Let .
Apply the power rule: goes to
Then, apply the chain rule. Multiply by :
The derivative of is .
The result of the chain rule is:
The result is:
Now simplify:
The answer is:
x 2 x 2*e *log(x) log (x)*e + ----------- x
/ 2 2*(-1 + log(x)) 4*log(x)\ x |log (x) - --------------- + --------|*e | 2 x | \ x /
/ 2 6*(-1 + log(x)) 2*(-3 + 2*log(x)) 6*log(x)\ x |log (x) - --------------- + ----------------- + --------|*e | 2 3 x | \ x x /