Mister Exam

Other calculators


y=e^x*ln^2x

Derivative of y=e^x*ln^2x

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 x    2   
e *log (x)
$$e^{x} \log{\left(x \right)}^{2}$$
d / x    2   \
--\e *log (x)/
dx            
$$\frac{d}{d x} e^{x} \log{\left(x \right)}^{2}$$
Detail solution
  1. Apply the product rule:

    ; to find :

    1. The derivative of is itself.

    ; to find :

    1. Let .

    2. Apply the power rule: goes to

    3. Then, apply the chain rule. Multiply by :

      1. The derivative of is .

      The result of the chain rule is:

    The result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
                x       
   2     x   2*e *log(x)
log (x)*e  + -----------
                  x     
$$e^{x} \log{\left(x \right)}^{2} + \frac{2 e^{x} \log{\left(x \right)}}{x}$$
The second derivative [src]
/   2      2*(-1 + log(x))   4*log(x)\  x
|log (x) - --------------- + --------|*e 
|                  2            x    |   
\                 x                  /   
$$\left(\log{\left(x \right)}^{2} + \frac{4 \log{\left(x \right)}}{x} - \frac{2 \left(\log{\left(x \right)} - 1\right)}{x^{2}}\right) e^{x}$$
The third derivative [src]
/   2      6*(-1 + log(x))   2*(-3 + 2*log(x))   6*log(x)\  x
|log (x) - --------------- + ----------------- + --------|*e 
|                  2                  3             x    |   
\                 x                  x                   /   
$$\left(\log{\left(x \right)}^{2} + \frac{6 \log{\left(x \right)}}{x} - \frac{6 \left(\log{\left(x \right)} - 1\right)}{x^{2}} + \frac{2 \cdot \left(2 \log{\left(x \right)} - 3\right)}{x^{3}}\right) e^{x}$$
The graph
Derivative of y=e^x*ln^2x