Mister Exam

Other calculators


y=e^secx-4✓x

Derivative of y=e^secx-4✓x

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 sec(x)       ___
E       - 4*\/ x 
esec(x)4xe^{\sec{\left(x \right)}} - 4 \sqrt{x}
E^sec(x) - 4*sqrt(x)
Detail solution
  1. Differentiate esec(x)4xe^{\sec{\left(x \right)}} - 4 \sqrt{x} term by term:

    1. Let u=sec(x)u = \sec{\left(x \right)}.

    2. The derivative of eue^{u} is itself.

    3. Then, apply the chain rule. Multiply by ddxsec(x)\frac{d}{d x} \sec{\left(x \right)}:

      1. Rewrite the function to be differentiated:

        sec(x)=1cos(x)\sec{\left(x \right)} = \frac{1}{\cos{\left(x \right)}}

      2. Let u=cos(x)u = \cos{\left(x \right)}.

      3. Apply the power rule: 1u\frac{1}{u} goes to 1u2- \frac{1}{u^{2}}

      4. Then, apply the chain rule. Multiply by ddxcos(x)\frac{d}{d x} \cos{\left(x \right)}:

        1. The derivative of cosine is negative sine:

          ddxcos(x)=sin(x)\frac{d}{d x} \cos{\left(x \right)} = - \sin{\left(x \right)}

        The result of the chain rule is:

        sin(x)cos2(x)\frac{\sin{\left(x \right)}}{\cos^{2}{\left(x \right)}}

      The result of the chain rule is:

      esec(x)sin(x)cos2(x)\frac{e^{\sec{\left(x \right)}} \sin{\left(x \right)}}{\cos^{2}{\left(x \right)}}

    4. The derivative of a constant times a function is the constant times the derivative of the function.

      1. Apply the power rule: x\sqrt{x} goes to 12x\frac{1}{2 \sqrt{x}}

      So, the result is: 2x- \frac{2}{\sqrt{x}}

    The result is: esec(x)sin(x)cos2(x)2x\frac{e^{\sec{\left(x \right)}} \sin{\left(x \right)}}{\cos^{2}{\left(x \right)}} - \frac{2}{\sqrt{x}}

  2. Now simplify:

    e1cos(x)sin(x)cos2(x)2x\frac{e^{\frac{1}{\cos{\left(x \right)}}} \sin{\left(x \right)}}{\cos^{2}{\left(x \right)}} - \frac{2}{\sqrt{x}}


The answer is:

e1cos(x)sin(x)cos2(x)2x\frac{e^{\frac{1}{\cos{\left(x \right)}}} \sin{\left(x \right)}}{\cos^{2}{\left(x \right)}} - \frac{2}{\sqrt{x}}

The graph
02468-8-6-4-2-1010-50000000000000005000000000000000
The first derivative [src]
    2      sec(x)              
- ----- + e      *sec(x)*tan(x)
    ___                        
  \/ x                         
esec(x)tan(x)sec(x)2xe^{\sec{\left(x \right)}} \tan{\left(x \right)} \sec{\left(x \right)} - \frac{2}{\sqrt{x}}
The second derivative [src]
 1        2       2     sec(x)      2     sec(x)          /       2   \  sec(x)       
---- + sec (x)*tan (x)*e       + tan (x)*e      *sec(x) + \1 + tan (x)/*e      *sec(x)
 3/2                                                                                  
x                                                                                     
(tan2(x)+1)esec(x)sec(x)+esec(x)tan2(x)sec2(x)+esec(x)tan2(x)sec(x)+1x32\left(\tan^{2}{\left(x \right)} + 1\right) e^{\sec{\left(x \right)}} \sec{\left(x \right)} + e^{\sec{\left(x \right)}} \tan^{2}{\left(x \right)} \sec^{2}{\left(x \right)} + e^{\sec{\left(x \right)}} \tan^{2}{\left(x \right)} \sec{\left(x \right)} + \frac{1}{x^{\frac{3}{2}}}
The third derivative [src]
    3         3       3     sec(x)      3     sec(x)               2       3     sec(x)        2    /       2   \  sec(x)            /       2   \  sec(x)              
- ------ + sec (x)*tan (x)*e       + tan (x)*e      *sec(x) + 3*sec (x)*tan (x)*e       + 3*sec (x)*\1 + tan (x)/*e      *tan(x) + 5*\1 + tan (x)/*e      *sec(x)*tan(x)
     5/2                                                                                                                                                                
  2*x                                                                                                                                                                   
3(tan2(x)+1)esec(x)tan(x)sec2(x)+5(tan2(x)+1)esec(x)tan(x)sec(x)+esec(x)tan3(x)sec3(x)+3esec(x)tan3(x)sec2(x)+esec(x)tan3(x)sec(x)32x523 \left(\tan^{2}{\left(x \right)} + 1\right) e^{\sec{\left(x \right)}} \tan{\left(x \right)} \sec^{2}{\left(x \right)} + 5 \left(\tan^{2}{\left(x \right)} + 1\right) e^{\sec{\left(x \right)}} \tan{\left(x \right)} \sec{\left(x \right)} + e^{\sec{\left(x \right)}} \tan^{3}{\left(x \right)} \sec^{3}{\left(x \right)} + 3 e^{\sec{\left(x \right)}} \tan^{3}{\left(x \right)} \sec^{2}{\left(x \right)} + e^{\sec{\left(x \right)}} \tan^{3}{\left(x \right)} \sec{\left(x \right)} - \frac{3}{2 x^{\frac{5}{2}}}
The graph
Derivative of y=e^secx-4✓x