Mister Exam

Derivative of y=e^secx-4✓x

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 sec(x)       ___
E       - 4*\/ x 
$$e^{\sec{\left(x \right)}} - 4 \sqrt{x}$$
E^sec(x) - 4*sqrt(x)
Detail solution
  1. Differentiate term by term:

    1. Let .

    2. The derivative of is itself.

    3. Then, apply the chain rule. Multiply by :

      1. Rewrite the function to be differentiated:

      2. Let .

      3. Apply the power rule: goes to

      4. Then, apply the chain rule. Multiply by :

        1. The derivative of cosine is negative sine:

        The result of the chain rule is:

      The result of the chain rule is:

    4. The derivative of a constant times a function is the constant times the derivative of the function.

      1. Apply the power rule: goes to

      So, the result is:

    The result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
    2      sec(x)              
- ----- + e      *sec(x)*tan(x)
    ___                        
  \/ x                         
$$e^{\sec{\left(x \right)}} \tan{\left(x \right)} \sec{\left(x \right)} - \frac{2}{\sqrt{x}}$$
The second derivative [src]
 1        2       2     sec(x)      2     sec(x)          /       2   \  sec(x)       
---- + sec (x)*tan (x)*e       + tan (x)*e      *sec(x) + \1 + tan (x)/*e      *sec(x)
 3/2                                                                                  
x                                                                                     
$$\left(\tan^{2}{\left(x \right)} + 1\right) e^{\sec{\left(x \right)}} \sec{\left(x \right)} + e^{\sec{\left(x \right)}} \tan^{2}{\left(x \right)} \sec^{2}{\left(x \right)} + e^{\sec{\left(x \right)}} \tan^{2}{\left(x \right)} \sec{\left(x \right)} + \frac{1}{x^{\frac{3}{2}}}$$
The third derivative [src]
    3         3       3     sec(x)      3     sec(x)               2       3     sec(x)        2    /       2   \  sec(x)            /       2   \  sec(x)              
- ------ + sec (x)*tan (x)*e       + tan (x)*e      *sec(x) + 3*sec (x)*tan (x)*e       + 3*sec (x)*\1 + tan (x)/*e      *tan(x) + 5*\1 + tan (x)/*e      *sec(x)*tan(x)
     5/2                                                                                                                                                                
  2*x                                                                                                                                                                   
$$3 \left(\tan^{2}{\left(x \right)} + 1\right) e^{\sec{\left(x \right)}} \tan{\left(x \right)} \sec^{2}{\left(x \right)} + 5 \left(\tan^{2}{\left(x \right)} + 1\right) e^{\sec{\left(x \right)}} \tan{\left(x \right)} \sec{\left(x \right)} + e^{\sec{\left(x \right)}} \tan^{3}{\left(x \right)} \sec^{3}{\left(x \right)} + 3 e^{\sec{\left(x \right)}} \tan^{3}{\left(x \right)} \sec^{2}{\left(x \right)} + e^{\sec{\left(x \right)}} \tan^{3}{\left(x \right)} \sec{\left(x \right)} - \frac{3}{2 x^{\frac{5}{2}}}$$
The graph
Derivative of y=e^secx-4✓x