Mister Exam

Derivative of y=e^cosh3x

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 cosh(3*x)
e         
ecosh(3x)e^{\cosh{\left(3 x \right)}}
d / cosh(3*x)\
--\e         /
dx            
ddxecosh(3x)\frac{d}{d x} e^{\cosh{\left(3 x \right)}}
The graph
02468-8-6-4-2-1010-5e2345e234
The first derivative [src]
   cosh(3*x)          
3*e         *sinh(3*x)
3ecosh(3x)sinh(3x)3 e^{\cosh{\left(3 x \right)}} \sinh{\left(3 x \right)}
The second derivative [src]
  /    2                 \  cosh(3*x)
9*\sinh (3*x) + cosh(3*x)/*e         
9(sinh2(3x)+cosh(3x))ecosh(3x)9 \left(\sinh^{2}{\left(3 x \right)} + \cosh{\left(3 x \right)}\right) e^{\cosh{\left(3 x \right)}}
The third derivative [src]
   /        2                   \  cosh(3*x)          
27*\1 + sinh (3*x) + 3*cosh(3*x)/*e         *sinh(3*x)
27(sinh2(3x)+3cosh(3x)+1)ecosh(3x)sinh(3x)27 \left(\sinh^{2}{\left(3 x \right)} + 3 \cosh{\left(3 x \right)} + 1\right) e^{\cosh{\left(3 x \right)}} \sinh{\left(3 x \right)}
The graph
Derivative of y=e^cosh3x