Mister Exam

Derivative of y=e^cosh3x

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 cosh(3*x)
e         
$$e^{\cosh{\left(3 x \right)}}$$
d / cosh(3*x)\
--\e         /
dx            
$$\frac{d}{d x} e^{\cosh{\left(3 x \right)}}$$
The graph
The first derivative [src]
   cosh(3*x)          
3*e         *sinh(3*x)
$$3 e^{\cosh{\left(3 x \right)}} \sinh{\left(3 x \right)}$$
The second derivative [src]
  /    2                 \  cosh(3*x)
9*\sinh (3*x) + cosh(3*x)/*e         
$$9 \left(\sinh^{2}{\left(3 x \right)} + \cosh{\left(3 x \right)}\right) e^{\cosh{\left(3 x \right)}}$$
The third derivative [src]
   /        2                   \  cosh(3*x)          
27*\1 + sinh (3*x) + 3*cosh(3*x)/*e         *sinh(3*x)
$$27 \left(\sinh^{2}{\left(3 x \right)} + 3 \cosh{\left(3 x \right)} + 1\right) e^{\cosh{\left(3 x \right)}} \sinh{\left(3 x \right)}$$
The graph
Derivative of y=e^cosh3x