Mister Exam

Other calculators

Derivative of y=cos*1/log2x

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 cos(1) 
--------
log(2*x)
$$\frac{\cos{\left(1 \right)}}{\log{\left(2 x \right)}}$$
cos(1)/log(2*x)
Detail solution
  1. The derivative of a constant times a function is the constant times the derivative of the function.

    1. Let .

    2. Apply the power rule: goes to

    3. Then, apply the chain rule. Multiply by :

      1. Let .

      2. The derivative of is .

      3. Then, apply the chain rule. Multiply by :

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: goes to

          So, the result is:

        The result of the chain rule is:

      The result of the chain rule is:

    So, the result is:


The answer is:

The graph
The first derivative [src]
  -cos(1)  
-----------
     2     
x*log (2*x)
$$- \frac{\cos{\left(1 \right)}}{x \log{\left(2 x \right)}^{2}}$$
The second derivative [src]
/       2    \       
|1 + --------|*cos(1)
\    log(2*x)/       
---------------------
      2    2         
     x *log (2*x)    
$$\frac{\left(1 + \frac{2}{\log{\left(2 x \right)}}\right) \cos{\left(1 \right)}}{x^{2} \log{\left(2 x \right)}^{2}}$$
The third derivative [src]
   /       3           3    \       
-2*|1 + -------- + ---------|*cos(1)
   |    log(2*x)      2     |       
   \               log (2*x)/       
------------------------------------
             3    2                 
            x *log (2*x)            
$$- \frac{2 \left(1 + \frac{3}{\log{\left(2 x \right)}} + \frac{3}{\log{\left(2 x \right)}^{2}}\right) \cos{\left(1 \right)}}{x^{3} \log{\left(2 x \right)}^{2}}$$