The first derivative
[src]
2*asin(x)
-----------
________
/ 2
\/ 1 - x
$$\frac{2 \operatorname{asin}{\left(x \right)}}{\sqrt{- x^{2} + 1}}$$
The second derivative
[src]
/ 1 x*asin(x) \
2*|- ------- + -----------|
| 2 3/2|
| -1 + x / 2\ |
\ \1 - x / /
$$2 \left(\frac{x \operatorname{asin}{\left(x \right)}}{\left(- x^{2} + 1\right)^{\frac{3}{2}}} - \frac{1}{x^{2} - 1}\right)$$
The third derivative
[src]
/ 2 \
| asin(x) 3*x 3*x *asin(x)|
2*|----------- + ---------- + ------------|
| 3/2 2 5/2 |
|/ 2\ / 2\ / 2\ |
\\1 - x / \-1 + x / \1 - x / /
$$2 \cdot \left(\frac{3 x}{\left(x^{2} - 1\right)^{2}} + \frac{3 x^{2} \operatorname{asin}{\left(x \right)}}{\left(- x^{2} + 1\right)^{\frac{5}{2}}} + \frac{\operatorname{asin}{\left(x \right)}}{\left(- x^{2} + 1\right)^{\frac{3}{2}}}\right)$$