Mister Exam

Derivative of y=(3x+5)cos²x

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
             2   
(3*x + 5)*cos (x)
(3x+5)cos2(x)\left(3 x + 5\right) \cos^{2}{\left(x \right)}
d /             2   \
--\(3*x + 5)*cos (x)/
dx                   
ddx(3x+5)cos2(x)\frac{d}{d x} \left(3 x + 5\right) \cos^{2}{\left(x \right)}
Detail solution
  1. Apply the product rule:

    ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)\frac{d}{d x} f{\left(x \right)} g{\left(x \right)} = f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}

    f(x)=3x+5f{\left(x \right)} = 3 x + 5; to find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

    1. Differentiate 3x+53 x + 5 term by term:

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: xx goes to 11

        So, the result is: 33

      2. The derivative of the constant 55 is zero.

      The result is: 33

    g(x)=cos2(x)g{\left(x \right)} = \cos^{2}{\left(x \right)}; to find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

    1. Let u=cos(x)u = \cos{\left(x \right)}.

    2. Apply the power rule: u2u^{2} goes to 2u2 u

    3. Then, apply the chain rule. Multiply by ddxcos(x)\frac{d}{d x} \cos{\left(x \right)}:

      1. The derivative of cosine is negative sine:

        ddxcos(x)=sin(x)\frac{d}{d x} \cos{\left(x \right)} = - \sin{\left(x \right)}

      The result of the chain rule is:

      2sin(x)cos(x)- 2 \sin{\left(x \right)} \cos{\left(x \right)}

    The result is: 2(3x+5)sin(x)cos(x)+3cos2(x)- 2 \cdot \left(3 x + 5\right) \sin{\left(x \right)} \cos{\left(x \right)} + 3 \cos^{2}{\left(x \right)}

  2. Now simplify:

    ((6x10)sin(x)+3cos(x))cos(x)\left(\left(- 6 x - 10\right) \sin{\left(x \right)} + 3 \cos{\left(x \right)}\right) \cos{\left(x \right)}


The answer is:

((6x10)sin(x)+3cos(x))cos(x)\left(\left(- 6 x - 10\right) \sin{\left(x \right)} + 3 \cos{\left(x \right)}\right) \cos{\left(x \right)}

The graph
02468-8-6-4-2-1010-5050
The first derivative [src]
     2                               
3*cos (x) - 2*(3*x + 5)*cos(x)*sin(x)
2(3x+5)sin(x)cos(x)+3cos2(x)- 2 \cdot \left(3 x + 5\right) \sin{\left(x \right)} \cos{\left(x \right)} + 3 \cos^{2}{\left(x \right)}
The second derivative [src]
  /          /   2         2   \                  \
2*\(5 + 3*x)*\sin (x) - cos (x)/ - 6*cos(x)*sin(x)/
2((3x+5)(sin2(x)cos2(x))6sin(x)cos(x))2 \left(\left(3 x + 5\right) \left(\sin^{2}{\left(x \right)} - \cos^{2}{\left(x \right)}\right) - 6 \sin{\left(x \right)} \cos{\left(x \right)}\right)
The third derivative [src]
  /       2           2                               \
2*\- 9*cos (x) + 9*sin (x) + 4*(5 + 3*x)*cos(x)*sin(x)/
2(4(3x+5)sin(x)cos(x)+9sin2(x)9cos2(x))2 \cdot \left(4 \cdot \left(3 x + 5\right) \sin{\left(x \right)} \cos{\left(x \right)} + 9 \sin^{2}{\left(x \right)} - 9 \cos^{2}{\left(x \right)}\right)
The graph
Derivative of y=(3x+5)cos²x