Mister Exam

Derivative of xtgx/4

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
x*tan(x)
--------
   4    
xtan(x)4\frac{x \tan{\left(x \right)}}{4}
(x*tan(x))/4
Detail solution
  1. The derivative of a constant times a function is the constant times the derivative of the function.

    1. Apply the product rule:

      ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)\frac{d}{d x} f{\left(x \right)} g{\left(x \right)} = f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}

      f(x)=xf{\left(x \right)} = x; to find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

      1. Apply the power rule: xx goes to 11

      g(x)=tan(x)g{\left(x \right)} = \tan{\left(x \right)}; to find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

      1. Rewrite the function to be differentiated:

        tan(x)=sin(x)cos(x)\tan{\left(x \right)} = \frac{\sin{\left(x \right)}}{\cos{\left(x \right)}}

      2. Apply the quotient rule, which is:

        ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)g2(x)\frac{d}{d x} \frac{f{\left(x \right)}}{g{\left(x \right)}} = \frac{- f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}}{g^{2}{\left(x \right)}}

        f(x)=sin(x)f{\left(x \right)} = \sin{\left(x \right)} and g(x)=cos(x)g{\left(x \right)} = \cos{\left(x \right)}.

        To find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

        1. The derivative of sine is cosine:

          ddxsin(x)=cos(x)\frac{d}{d x} \sin{\left(x \right)} = \cos{\left(x \right)}

        To find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

        1. The derivative of cosine is negative sine:

          ddxcos(x)=sin(x)\frac{d}{d x} \cos{\left(x \right)} = - \sin{\left(x \right)}

        Now plug in to the quotient rule:

        sin2(x)+cos2(x)cos2(x)\frac{\sin^{2}{\left(x \right)} + \cos^{2}{\left(x \right)}}{\cos^{2}{\left(x \right)}}

      The result is: x(sin2(x)+cos2(x))cos2(x)+tan(x)\frac{x \left(\sin^{2}{\left(x \right)} + \cos^{2}{\left(x \right)}\right)}{\cos^{2}{\left(x \right)}} + \tan{\left(x \right)}

    So, the result is: x(sin2(x)+cos2(x))4cos2(x)+tan(x)4\frac{x \left(\sin^{2}{\left(x \right)} + \cos^{2}{\left(x \right)}\right)}{4 \cos^{2}{\left(x \right)}} + \frac{\tan{\left(x \right)}}{4}

  2. Now simplify:

    x+sin(2x)24cos2(x)\frac{x + \frac{\sin{\left(2 x \right)}}{2}}{4 \cos^{2}{\left(x \right)}}


The answer is:

x+sin(2x)24cos2(x)\frac{x + \frac{\sin{\left(2 x \right)}}{2}}{4 \cos^{2}{\left(x \right)}}

The graph
02468-8-6-4-2-1010-20002000
The first derivative [src]
           /       2   \
tan(x)   x*\1 + tan (x)/
------ + ---------------
  4             4       
x(tan2(x)+1)4+tan(x)4\frac{x \left(\tan^{2}{\left(x \right)} + 1\right)}{4} + \frac{\tan{\left(x \right)}}{4}
The second derivative [src]
       2        /       2   \       
1 + tan (x) + x*\1 + tan (x)/*tan(x)
------------------------------------
                 2                  
x(tan2(x)+1)tan(x)+tan2(x)+12\frac{x \left(\tan^{2}{\left(x \right)} + 1\right) \tan{\left(x \right)} + \tan^{2}{\left(x \right)} + 1}{2}
The third derivative [src]
/       2   \ /             /         2   \\
\1 + tan (x)/*\3*tan(x) + x*\1 + 3*tan (x)//
--------------------------------------------
                     2                      
(x(3tan2(x)+1)+3tan(x))(tan2(x)+1)2\frac{\left(x \left(3 \tan^{2}{\left(x \right)} + 1\right) + 3 \tan{\left(x \right)}\right) \left(\tan^{2}{\left(x \right)} + 1\right)}{2}