Mister Exam

Derivative of xe^(-5x)+4

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   -5*x    
x*E     + 4
e5xx+4e^{- 5 x} x + 4
x*E^(-5*x) + 4
Detail solution
  1. Differentiate e5xx+4e^{- 5 x} x + 4 term by term:

    1. Apply the quotient rule, which is:

      ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)g2(x)\frac{d}{d x} \frac{f{\left(x \right)}}{g{\left(x \right)}} = \frac{- f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}}{g^{2}{\left(x \right)}}

      f(x)=xf{\left(x \right)} = x and g(x)=e5xg{\left(x \right)} = e^{5 x}.

      To find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

      1. Apply the power rule: xx goes to 11

      To find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

      1. Let u=5xu = 5 x.

      2. The derivative of eue^{u} is itself.

      3. Then, apply the chain rule. Multiply by ddx5x\frac{d}{d x} 5 x:

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: xx goes to 11

          So, the result is: 55

        The result of the chain rule is:

        5e5x5 e^{5 x}

      Now plug in to the quotient rule:

      (5xe5x+e5x)e10x\left(- 5 x e^{5 x} + e^{5 x}\right) e^{- 10 x}

    2. The derivative of the constant 44 is zero.

    The result is: (5xe5x+e5x)e10x\left(- 5 x e^{5 x} + e^{5 x}\right) e^{- 10 x}

  2. Now simplify:

    (15x)e5x\left(1 - 5 x\right) e^{- 5 x}


The answer is:

(15x)e5x\left(1 - 5 x\right) e^{- 5 x}

The graph
02468-8-6-4-2-1010-1e231e23
The first derivative [src]
 -5*x        -5*x
E     - 5*x*e    
5xe5x+e5x- 5 x e^{- 5 x} + e^{- 5 x}
The second derivative [src]
              -5*x
5*(-2 + 5*x)*e    
5(5x2)e5x5 \left(5 x - 2\right) e^{- 5 x}
The third derivative [src]
              -5*x
25*(3 - 5*x)*e    
25(35x)e5x25 \left(3 - 5 x\right) e^{- 5 x}