2 / /x\ \ x *|sin|-| + 1| \ \2/ /
d / 2 / /x\ \\ --|x *|sin|-| + 1|| dx\ \ \2/ //
Apply the product rule:
; to find :
Apply the power rule: goes to
; to find :
Differentiate term by term:
Let .
The derivative of sine is cosine:
Then, apply the chain rule. Multiply by :
The derivative of a constant times a function is the constant times the derivative of the function.
Apply the power rule: goes to
So, the result is:
The result of the chain rule is:
The derivative of the constant is zero.
The result is:
The result is:
Now simplify:
The answer is:
2 /x\ x *cos|-| \2/ / /x\ \ --------- + 2*x*|sin|-| + 1| 2 \ \2/ /
2 /x\ x *sin|-| /x\ /x\ \2/ 2 + 2*sin|-| + 2*x*cos|-| - --------- \2/ \2/ 4
/x\ 2 /x\ 3*x*sin|-| x *cos|-| /x\ \2/ \2/ 3*cos|-| - ---------- - --------- \2/ 2 8