Mister Exam

Other calculators


x^2(sin(0.5x)+1)

Derivative of x^2(sin(0.5x)+1)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 2 /   /x\    \
x *|sin|-| + 1|
   \   \2/    /
x2(sin(x2)+1)x^{2} \left(\sin{\left(\frac{x}{2} \right)} + 1\right)
d / 2 /   /x\    \\
--|x *|sin|-| + 1||
dx\   \   \2/    //
ddxx2(sin(x2)+1)\frac{d}{d x} x^{2} \left(\sin{\left(\frac{x}{2} \right)} + 1\right)
Detail solution
  1. Apply the product rule:

    ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)\frac{d}{d x} f{\left(x \right)} g{\left(x \right)} = f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}

    f(x)=x2f{\left(x \right)} = x^{2}; to find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

    1. Apply the power rule: x2x^{2} goes to 2x2 x

    g(x)=sin(x2)+1g{\left(x \right)} = \sin{\left(\frac{x}{2} \right)} + 1; to find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

    1. Differentiate sin(x2)+1\sin{\left(\frac{x}{2} \right)} + 1 term by term:

      1. Let u=x2u = \frac{x}{2}.

      2. The derivative of sine is cosine:

        ddusin(u)=cos(u)\frac{d}{d u} \sin{\left(u \right)} = \cos{\left(u \right)}

      3. Then, apply the chain rule. Multiply by ddxx2\frac{d}{d x} \frac{x}{2}:

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: xx goes to 11

          So, the result is: 12\frac{1}{2}

        The result of the chain rule is:

        cos(x2)2\frac{\cos{\left(\frac{x}{2} \right)}}{2}

      4. The derivative of the constant 11 is zero.

      The result is: cos(x2)2\frac{\cos{\left(\frac{x}{2} \right)}}{2}

    The result is: x2cos(x2)2+2x(sin(x2)+1)\frac{x^{2} \cos{\left(\frac{x}{2} \right)}}{2} + 2 x \left(\sin{\left(\frac{x}{2} \right)} + 1\right)

  2. Now simplify:

    x(xcos(x2)+4sin(x2)+4)2\frac{x \left(x \cos{\left(\frac{x}{2} \right)} + 4 \sin{\left(\frac{x}{2} \right)} + 4\right)}{2}


The answer is:

x(xcos(x2)+4sin(x2)+4)2\frac{x \left(x \cos{\left(\frac{x}{2} \right)} + 4 \sin{\left(\frac{x}{2} \right)} + 4\right)}{2}

The graph
02468-8-6-4-2-1010-250250
The first derivative [src]
 2    /x\                   
x *cos|-|                   
      \2/       /   /x\    \
--------- + 2*x*|sin|-| + 1|
    2           \   \2/    /
x2cos(x2)2+2x(sin(x2)+1)\frac{x^{2} \cos{\left(\frac{x}{2} \right)}}{2} + 2 x \left(\sin{\left(\frac{x}{2} \right)} + 1\right)
The second derivative [src]
                             2    /x\
                            x *sin|-|
         /x\          /x\         \2/
2 + 2*sin|-| + 2*x*cos|-| - ---------
         \2/          \2/       4    
x2sin(x2)4+2xcos(x2)+2sin(x2)+2- \frac{x^{2} \sin{\left(\frac{x}{2} \right)}}{4} + 2 x \cos{\left(\frac{x}{2} \right)} + 2 \sin{\left(\frac{x}{2} \right)} + 2
The third derivative [src]
                  /x\    2    /x\
           3*x*sin|-|   x *cos|-|
     /x\          \2/         \2/
3*cos|-| - ---------- - ---------
     \2/       2            8    
x2cos(x2)83xsin(x2)2+3cos(x2)- \frac{x^{2} \cos{\left(\frac{x}{2} \right)}}{8} - \frac{3 x \sin{\left(\frac{x}{2} \right)}}{2} + 3 \cos{\left(\frac{x}{2} \right)}
The graph
Derivative of x^2(sin(0.5x)+1)