Mister Exam

Other calculators


x^2sin(x^2)

Derivative of x^2sin(x^2)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 2    / 2\
x *sin\x /
$$x^{2} \sin{\left(x^{2} \right)}$$
d / 2    / 2\\
--\x *sin\x //
dx            
$$\frac{d}{d x} x^{2} \sin{\left(x^{2} \right)}$$
Detail solution
  1. Apply the product rule:

    ; to find :

    1. Apply the power rule: goes to

    ; to find :

    1. Let .

    2. The derivative of sine is cosine:

    3. Then, apply the chain rule. Multiply by :

      1. Apply the power rule: goes to

      The result of the chain rule is:

    The result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
       / 2\      3    / 2\
2*x*sin\x / + 2*x *cos\x /
$$2 x^{3} \cos{\left(x^{2} \right)} + 2 x \sin{\left(x^{2} \right)}$$
The second derivative [src]
  /   2 /     / 2\      2    / 2\\      2    / 2\      / 2\\
2*\- x *\- cos\x / + 2*x *sin\x // + 4*x *cos\x / + sin\x //
$$2 \left(- x^{2} \cdot \left(2 x^{2} \sin{\left(x^{2} \right)} - \cos{\left(x^{2} \right)}\right) + 4 x^{2} \cos{\left(x^{2} \right)} + \sin{\left(x^{2} \right)}\right)$$
The third derivative [src]
    /     / 2\    2 /     / 2\      2    / 2\\      2    / 2\\
4*x*\6*cos\x / - x *\3*sin\x / + 2*x *cos\x // - 6*x *sin\x //
$$4 x \left(- x^{2} \cdot \left(2 x^{2} \cos{\left(x^{2} \right)} + 3 \sin{\left(x^{2} \right)}\right) - 6 x^{2} \sin{\left(x^{2} \right)} + 6 \cos{\left(x^{2} \right)}\right)$$
The graph
Derivative of x^2sin(x^2)