Mister Exam

Other calculators


(1-x^2)*sinx^2

Derivative of (1-x^2)*sinx^2

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
/     2\    2   
\1 - x /*sin (x)
$$\left(1 - x^{2}\right) \sin^{2}{\left(x \right)}$$
d //     2\    2   \
--\\1 - x /*sin (x)/
dx                  
$$\frac{d}{d x} \left(1 - x^{2}\right) \sin^{2}{\left(x \right)}$$
Detail solution
  1. Apply the product rule:

    ; to find :

    1. Differentiate term by term:

      1. The derivative of the constant is zero.

      2. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: goes to

        So, the result is:

      The result is:

    ; to find :

    1. Let .

    2. Apply the power rule: goes to

    3. Then, apply the chain rule. Multiply by :

      1. The derivative of sine is cosine:

      The result of the chain rule is:

    The result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
         2        /     2\              
- 2*x*sin (x) + 2*\1 - x /*cos(x)*sin(x)
$$- 2 x \sin^{2}{\left(x \right)} + 2 \cdot \left(1 - x^{2}\right) \sin{\left(x \right)} \cos{\left(x \right)}$$
The second derivative [src]
  /     2      /      2\ /   2         2   \                    \
2*\- sin (x) + \-1 + x /*\sin (x) - cos (x)/ - 4*x*cos(x)*sin(x)/
$$2 \left(- 4 x \sin{\left(x \right)} \cos{\left(x \right)} + \left(x^{2} - 1\right) \left(\sin^{2}{\left(x \right)} - \cos^{2}{\left(x \right)}\right) - \sin^{2}{\left(x \right)}\right)$$
The third derivative [src]
  /                       /   2         2   \     /      2\              \
4*\-3*cos(x)*sin(x) + 3*x*\sin (x) - cos (x)/ + 2*\-1 + x /*cos(x)*sin(x)/
$$4 \cdot \left(3 x \left(\sin^{2}{\left(x \right)} - \cos^{2}{\left(x \right)}\right) + 2 \left(x^{2} - 1\right) \sin{\left(x \right)} \cos{\left(x \right)} - 3 \sin{\left(x \right)} \cos{\left(x \right)}\right)$$
The graph
Derivative of (1-x^2)*sinx^2