Mister Exam

Other calculators


(x^2+1)/x^2

Derivative of (x^2+1)/x^2

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 2    
x  + 1
------
   2  
  x   
x2+1x2\frac{x^{2} + 1}{x^{2}}
(x^2 + 1)/x^2
Detail solution
  1. Apply the quotient rule, which is:

    ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)g2(x)\frac{d}{d x} \frac{f{\left(x \right)}}{g{\left(x \right)}} = \frac{- f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}}{g^{2}{\left(x \right)}}

    f(x)=x2+1f{\left(x \right)} = x^{2} + 1 and g(x)=x2g{\left(x \right)} = x^{2}.

    To find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

    1. Differentiate x2+1x^{2} + 1 term by term:

      1. The derivative of the constant 11 is zero.

      2. Apply the power rule: x2x^{2} goes to 2x2 x

      The result is: 2x2 x

    To find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

    1. Apply the power rule: x2x^{2} goes to 2x2 x

    Now plug in to the quotient rule:

    2x32x(x2+1)x4\frac{2 x^{3} - 2 x \left(x^{2} + 1\right)}{x^{4}}

  2. Now simplify:

    2x3- \frac{2}{x^{3}}


The answer is:

2x3- \frac{2}{x^{3}}

The graph
02468-8-6-4-2-1010-50005000
The first derivative [src]
    / 2    \      
  2*\x  + 1/   2*x
- ---------- + ---
       3         2
      x         x 
2xx22(x2+1)x3\frac{2 x}{x^{2}} - \frac{2 \left(x^{2} + 1\right)}{x^{3}}
The second derivative [src]
  /          2\
  |     1 + x |
6*|-1 + ------|
  |        2  |
  \       x   /
---------------
        2      
       x       
6(1+x2+1x2)x2\frac{6 \left(-1 + \frac{x^{2} + 1}{x^{2}}\right)}{x^{2}}
The third derivative [src]
   /         2\
   |    1 + x |
24*|1 - ------|
   |       2  |
   \      x   /
---------------
        3      
       x       
24(1x2+1x2)x3\frac{24 \left(1 - \frac{x^{2} + 1}{x^{2}}\right)}{x^{3}}
The graph
Derivative of (x^2+1)/x^2