Mister Exam

Other calculators


x^2*(2*log(x)-3)

Derivative of x^2*(2*log(x)-3)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 2               
x *(2*log(x) - 3)
x2(2log(x)3)x^{2} \left(2 \log{\left(x \right)} - 3\right)
x^2*(2*log(x) - 3)
Detail solution
  1. Apply the product rule:

    ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)\frac{d}{d x} f{\left(x \right)} g{\left(x \right)} = f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}

    f(x)=x2f{\left(x \right)} = x^{2}; to find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

    1. Apply the power rule: x2x^{2} goes to 2x2 x

    g(x)=2log(x)3g{\left(x \right)} = 2 \log{\left(x \right)} - 3; to find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

    1. Differentiate 2log(x)32 \log{\left(x \right)} - 3 term by term:

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. The derivative of log(x)\log{\left(x \right)} is 1x\frac{1}{x}.

        So, the result is: 2x\frac{2}{x}

      2. The derivative of the constant 3-3 is zero.

      The result is: 2x\frac{2}{x}

    The result is: 2x(2log(x)3)+2x2 x \left(2 \log{\left(x \right)} - 3\right) + 2 x

  2. Now simplify:

    4x(log(x)1)4 x \left(\log{\left(x \right)} - 1\right)


The answer is:

4x(log(x)1)4 x \left(\log{\left(x \right)} - 1\right)

The graph
02468-8-6-4-2-1010-200200
The first derivative [src]
2*x + 2*x*(2*log(x) - 3)
2x(2log(x)3)+2x2 x \left(2 \log{\left(x \right)} - 3\right) + 2 x
The second derivative [src]
4*log(x)
4log(x)4 \log{\left(x \right)}
The third derivative [src]
4
-
x
4x\frac{4}{x}
The graph
Derivative of x^2*(2*log(x)-3)