Mister Exam

Other calculators

Derivative of (x^2-3x)/(x-4)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 2      
x  - 3*x
--------
 x - 4  
$$\frac{x^{2} - 3 x}{x - 4}$$
(x^2 - 3*x)/(x - 4)
Detail solution
  1. Apply the quotient rule, which is:

    and .

    To find :

    1. Differentiate term by term:

      1. Apply the power rule: goes to

      2. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: goes to

        So, the result is:

      The result is:

    To find :

    1. Differentiate term by term:

      1. The derivative of the constant is zero.

      2. Apply the power rule: goes to

      The result is:

    Now plug in to the quotient rule:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
            2      
-3 + 2*x   x  - 3*x
-------- - --------
 x - 4            2
           (x - 4) 
$$\frac{2 x - 3}{x - 4} - \frac{x^{2} - 3 x}{\left(x - 4\right)^{2}}$$
The second derivative [src]
  /    -3 + 2*x   x*(-3 + x)\
2*|1 - -------- + ----------|
  |     -4 + x            2 |
  \               (-4 + x)  /
-----------------------------
            -4 + x           
$$\frac{2 \left(\frac{x \left(x - 3\right)}{\left(x - 4\right)^{2}} + 1 - \frac{2 x - 3}{x - 4}\right)}{x - 4}$$
The third derivative [src]
  /     -3 + 2*x   x*(-3 + x)\
6*|-1 + -------- - ----------|
  |      -4 + x            2 |
  \                (-4 + x)  /
------------------------------
                  2           
          (-4 + x)            
$$\frac{6 \left(- \frac{x \left(x - 3\right)}{\left(x - 4\right)^{2}} - 1 + \frac{2 x - 3}{x - 4}\right)}{\left(x - 4\right)^{2}}$$