Mister Exam

Other calculators


x^2/(x^2-3)

Derivative of x^2/(x^2-3)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   2  
  x   
------
 2    
x  - 3
$$\frac{x^{2}}{x^{2} - 3}$$
x^2/(x^2 - 3)
Detail solution
  1. Apply the quotient rule, which is:

    and .

    To find :

    1. Apply the power rule: goes to

    To find :

    1. Differentiate term by term:

      1. The derivative of the constant is zero.

      2. Apply the power rule: goes to

      The result is:

    Now plug in to the quotient rule:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
        3           
     2*x       2*x  
- --------- + ------
          2    2    
  / 2    \    x  - 3
  \x  - 3/          
$$- \frac{2 x^{3}}{\left(x^{2} - 3\right)^{2}} + \frac{2 x}{x^{2} - 3}$$
The second derivative [src]
  /                 /          2 \\
  |               2 |       4*x  ||
  |              x *|-1 + -------||
  |         2       |           2||
  |      4*x        \     -3 + x /|
2*|1 - ------- + -----------------|
  |          2              2     |
  \    -3 + x         -3 + x      /
-----------------------------------
                    2              
              -3 + x               
$$\frac{2 \left(\frac{x^{2} \left(\frac{4 x^{2}}{x^{2} - 3} - 1\right)}{x^{2} - 3} - \frac{4 x^{2}}{x^{2} - 3} + 1\right)}{x^{2} - 3}$$
The third derivative [src]
     /                    /          2 \\
     |                  2 |       2*x  ||
     |               2*x *|-1 + -------||
     |          2         |           2||
     |       4*x          \     -3 + x /|
12*x*|-2 + ------- - -------------------|
     |           2               2      |
     \     -3 + x          -3 + x       /
-----------------------------------------
                         2               
                /      2\                
                \-3 + x /                
$$\frac{12 x \left(- \frac{2 x^{2} \left(\frac{2 x^{2}}{x^{2} - 3} - 1\right)}{x^{2} - 3} + \frac{4 x^{2}}{x^{2} - 3} - 2\right)}{\left(x^{2} - 3\right)^{2}}$$
The graph
Derivative of x^2/(x^2-3)