Mister Exam

Derivative of tan(5/x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   /5\
tan|-|
   \x/
$$\tan{\left(\frac{5}{x} \right)}$$
tan(5/x)
Detail solution
  1. Rewrite the function to be differentiated:

  2. Apply the quotient rule, which is:

    and .

    To find :

    1. Let .

    2. The derivative of sine is cosine:

    3. Then, apply the chain rule. Multiply by :

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: goes to

        So, the result is:

      The result of the chain rule is:

    To find :

    1. Let .

    2. The derivative of cosine is negative sine:

    3. Then, apply the chain rule. Multiply by :

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: goes to

        So, the result is:

      The result of the chain rule is:

    Now plug in to the quotient rule:

  3. Now simplify:


The answer is:

The graph
The first derivative [src]
   /       2/5\\
-5*|1 + tan |-||
   \        \x//
----------------
        2       
       x        
$$- \frac{5 \left(\tan^{2}{\left(\frac{5}{x} \right)} + 1\right)}{x^{2}}$$
The second derivative [src]
                 /         /5\\
                 |    5*tan|-||
   /       2/5\\ |         \x/|
10*|1 + tan |-||*|1 + --------|
   \        \x// \       x    /
-------------------------------
                3              
               x               
$$\frac{10 \left(1 + \frac{5 \tan{\left(\frac{5}{x} \right)}}{x}\right) \left(\tan^{2}{\left(\frac{5}{x} \right)} + 1\right)}{x^{3}}$$
The third derivative [src]
                  /       /       2/5\\         /5\         2/5\\
                  |    25*|1 + tan |-||   30*tan|-|   50*tan |-||
    /       2/5\\ |       \        \x//         \x/          \x/|
-10*|1 + tan |-||*|3 + ---------------- + --------- + ----------|
    \        \x// |            2              x            2    |
                  \           x                           x     /
-----------------------------------------------------------------
                                 4                               
                                x                                
$$- \frac{10 \left(\tan^{2}{\left(\frac{5}{x} \right)} + 1\right) \left(3 + \frac{30 \tan{\left(\frac{5}{x} \right)}}{x} + \frac{25 \left(\tan^{2}{\left(\frac{5}{x} \right)} + 1\right)}{x^{2}} + \frac{50 \tan^{2}{\left(\frac{5}{x} \right)}}{x^{2}}\right)}{x^{4}}$$
The graph
Derivative of tan(5/x)