Mister Exam

Other calculators

Derivative of x^3+x*ln(x+1)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 3               
x  + x*log(x + 1)
x3+xlog(x+1)x^{3} + x \log{\left(x + 1 \right)}
x^3 + x*log(x + 1)
Detail solution
  1. Differentiate x3+xlog(x+1)x^{3} + x \log{\left(x + 1 \right)} term by term:

    1. Apply the power rule: x3x^{3} goes to 3x23 x^{2}

    2. Apply the product rule:

      ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)\frac{d}{d x} f{\left(x \right)} g{\left(x \right)} = f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}

      f(x)=xf{\left(x \right)} = x; to find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

      1. Apply the power rule: xx goes to 11

      g(x)=log(x+1)g{\left(x \right)} = \log{\left(x + 1 \right)}; to find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

      1. Let u=x+1u = x + 1.

      2. The derivative of log(u)\log{\left(u \right)} is 1u\frac{1}{u}.

      3. Then, apply the chain rule. Multiply by ddx(x+1)\frac{d}{d x} \left(x + 1\right):

        1. Differentiate x+1x + 1 term by term:

          1. Apply the power rule: xx goes to 11

          2. The derivative of the constant 11 is zero.

          The result is: 11

        The result of the chain rule is:

        1x+1\frac{1}{x + 1}

      The result is: xx+1+log(x+1)\frac{x}{x + 1} + \log{\left(x + 1 \right)}

    The result is: 3x2+xx+1+log(x+1)3 x^{2} + \frac{x}{x + 1} + \log{\left(x + 1 \right)}

  2. Now simplify:

    x+(x+1)(3x2+log(x+1))x+1\frac{x + \left(x + 1\right) \left(3 x^{2} + \log{\left(x + 1 \right)}\right)}{x + 1}


The answer is:

x+(x+1)(3x2+log(x+1))x+1\frac{x + \left(x + 1\right) \left(3 x^{2} + \log{\left(x + 1 \right)}\right)}{x + 1}

The graph
02468-8-6-4-2-10102000-1000
The first derivative [src]
   2     x               
3*x  + ----- + log(x + 1)
       x + 1             
3x2+xx+1+log(x+1)3 x^{2} + \frac{x}{x + 1} + \log{\left(x + 1 \right)}
The second derivative [src]
  2              x    
----- + 6*x - --------
1 + x                2
              (1 + x) 
6xx(x+1)2+2x+16 x - \frac{x}{\left(x + 1\right)^{2}} + \frac{2}{x + 1}
The third derivative [src]
       3         2*x   
6 - -------- + --------
           2          3
    (1 + x)    (1 + x) 
2x(x+1)3+63(x+1)2\frac{2 x}{\left(x + 1\right)^{3}} + 6 - \frac{3}{\left(x + 1\right)^{2}}