tan(x) / 3 \ \x + 4/
(x^3 + 4)^tan(x)
Don't know the steps in finding this derivative.
But the derivative is
The answer is:
tan(x) / 2 \
/ 3 \ |/ 2 \ / 3 \ 3*x *tan(x)|
\x + 4/ *|\1 + tan (x)/*log\x + 4/ + -----------|
| 3 |
\ x + 4 /
/ 2 \
tan(x) |/ 2 \ 4 2 / 2 \|
/ 3\ ||/ 2 \ / 3\ 3*x *tan(x)| 9*x *tan(x) / 2 \ / 3\ 6*x*tan(x) 6*x *\1 + tan (x)/|
\4 + x / *||\1 + tan (x)/*log\4 + x / + -----------| - ----------- + 2*\1 + tan (x)/*log\4 + x /*tan(x) + ---------- + ------------------|
|| 3 | 2 3 3 |
|\ 4 + x / / 3\ 4 + x 4 + x |
\ \4 + x / /
/ 3 \
tan(x) |/ 2 \ 2 / 2 \ / 4 2 / 2 \\ 3 4 / 2 \ / 2 \ 6 2 / 2 \ |
/ 3\ ||/ 2 \ / 3\ 3*x *tan(x)| / 2 \ / 3\ |/ 2 \ / 3\ 3*x *tan(x)| | 9*x *tan(x) / 2 \ / 3\ 6*x*tan(x) 6*x *\1 + tan (x)/| 6*tan(x) 54*x *tan(x) 27*x *\1 + tan (x)/ 2 / 2 \ / 3\ 18*x*\1 + tan (x)/ 54*x *tan(x) 18*x *\1 + tan (x)/*tan(x)|
\4 + x / *||\1 + tan (x)/*log\4 + x / + -----------| + 2*\1 + tan (x)/ *log\4 + x / + 3*|\1 + tan (x)/*log\4 + x / + -----------|*|- ----------- + 2*\1 + tan (x)/*log\4 + x /*tan(x) + ---------- + ------------------| + -------- - ------------ - ------------------- + 4*tan (x)*\1 + tan (x)/*log\4 + x / + ------------------ + ------------ + --------------------------|
|| 3 | | 3 | | 2 3 3 | 3 2 2 3 3 3 |
|\ 4 + x / \ 4 + x / | / 3\ 4 + x 4 + x | 4 + x / 3\ / 3\ 4 + x / 3\ 4 + x |
\ \ \4 + x / / \4 + x / \4 + x / \4 + x / /