Mister Exam

Other calculators


(√x^3+4)*e^(-2x)

Derivative of (√x^3+4)*e^(-2x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
/     3    \      
|  ___     |  -2*x
\\/ x   + 4/*e    
$$\left(\left(\sqrt{x}\right)^{3} + 4\right) e^{- 2 x}$$
  //     3    \      \
d ||  ___     |  -2*x|
--\\\/ x   + 4/*e    /
dx                    
$$\frac{d}{d x} \left(\left(\sqrt{x}\right)^{3} + 4\right) e^{- 2 x}$$
Detail solution
  1. Apply the quotient rule, which is:

    and .

    To find :

    1. Differentiate term by term:

      1. The derivative of the constant is zero.

      2. Apply the power rule: goes to

      The result is:

    To find :

    1. Let .

    2. The derivative of is itself.

    3. Then, apply the chain rule. Multiply by :

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: goes to

        So, the result is:

      The result of the chain rule is:

    Now plug in to the quotient rule:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
    /     3    \             ___  -2*x
    |  ___     |  -2*x   3*\/ x *e    
- 2*\\/ x   + 4/*e     + -------------
                               2      
$$\frac{3 \sqrt{x} e^{- 2 x}}{2} - 2 \left(\left(\sqrt{x}\right)^{3} + 4\right) e^{- 2 x}$$
The second derivative [src]
/         ___      3/2      3   \  -2*x
|16 - 6*\/ x  + 4*x    + -------|*e    
|                            ___|      
\                        4*\/ x /      
$$\left(4 x^{\frac{3}{2}} - 6 \sqrt{x} + 16 + \frac{3}{4 \sqrt{x}}\right) e^{- 2 x}$$
The third derivative [src]
/         3/2        ___      9        3   \  -2*x
|-32 - 8*x    + 18*\/ x  - ------- - ------|*e    
|                              ___      3/2|      
\                          2*\/ x    8*x   /      
$$\left(- 8 x^{\frac{3}{2}} + 18 \sqrt{x} - 32 - \frac{9}{2 \sqrt{x}} - \frac{3}{8 x^{\frac{3}{2}}}\right) e^{- 2 x}$$
The graph
Derivative of (√x^3+4)*e^(-2x)