Mister Exam

Other calculators


(x^3+2x)^37

Derivative of (x^3+2x)^37

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
          37
/ 3      \  
\x  + 2*x/  
$$\left(x^{3} + 2 x\right)^{37}$$
(x^3 + 2*x)^37
Detail solution
  1. Let .

  2. Apply the power rule: goes to

  3. Then, apply the chain rule. Multiply by :

    1. Differentiate term by term:

      1. Apply the power rule: goes to

      2. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: goes to

        So, the result is:

      The result is:

    The result of the chain rule is:

  4. Now simplify:


The answer is:

The graph
The first derivative [src]
          36              
/ 3      \   /          2\
\x  + 2*x/  *\74 + 111*x /
$$\left(111 x^{2} + 74\right) \left(x^{3} + 2 x\right)^{36}$$
The second derivative [src]
                35 /            2              \
     35 /     2\   |  /       2\     2 /     2\|
222*x  *\2 + x /  *\6*\2 + 3*x /  + x *\2 + x //
$$222 x^{35} \left(x^{2} + 2\right)^{35} \left(x^{2} \left(x^{2} + 2\right) + 6 \left(3 x^{2} + 2\right)^{2}\right)$$
The third derivative [src]
                34 /              3              2                             \
     34 /     2\   |    /       2\     2 /     2\         2 /     2\ /       2\|
222*x  *\2 + x /  *\210*\2 + 3*x /  + x *\2 + x /  + 108*x *\2 + x /*\2 + 3*x //
$$222 x^{34} \left(x^{2} + 2\right)^{34} \left(x^{2} \left(x^{2} + 2\right)^{2} + 108 x^{2} \left(x^{2} + 2\right) \left(3 x^{2} + 2\right) + 210 \left(3 x^{2} + 2\right)^{3}\right)$$
The graph
Derivative of (x^3+2x)^37