Mister Exam

Other calculators


x^2*5^x

Derivative of x^2*5^x

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 2  x
x *5 
$$5^{x} x^{2}$$
x^2*5^x
Detail solution
  1. Apply the product rule:

    ; to find :

    1. Apply the power rule: goes to

    ; to find :

    The result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
     x    x  2       
2*x*5  + 5 *x *log(5)
$$5^{x} x^{2} \log{\left(5 \right)} + 2 \cdot 5^{x} x$$
The second derivative [src]
 x /     2    2                \
5 *\2 + x *log (5) + 4*x*log(5)/
$$5^{x} \left(x^{2} \log{\left(5 \right)}^{2} + 4 x \log{\left(5 \right)} + 2\right)$$
The third derivative [src]
 x /     2    2                \       
5 *\6 + x *log (5) + 6*x*log(5)/*log(5)
$$5^{x} \left(x^{2} \log{\left(5 \right)}^{2} + 6 x \log{\left(5 \right)} + 6\right) \log{\left(5 \right)}$$
The graph
Derivative of x^2*5^x