Detail solution
-
Apply the product rule:
; to find :
-
Apply the power rule: goes to
; to find :
-
Let .
-
Apply the power rule: goes to
-
Then, apply the chain rule. Multiply by :
-
Rewrite the function to be differentiated:
-
Apply the quotient rule, which is:
and .
To find :
-
The derivative of sine is cosine:
To find :
-
The derivative of cosine is negative sine:
Now plug in to the quotient rule:
The result of the chain rule is:
The result is:
Now simplify:
The answer is:
The first derivative
[src]
2 2 3 / 2 \
3*x *tan (x) + x *\2 + 2*tan (x)/*tan(x)
$$x^{3} \cdot \left(2 \tan^{2}{\left(x \right)} + 2\right) \tan{\left(x \right)} + 3 x^{2} \tan^{2}{\left(x \right)}$$
The second derivative
[src]
/ 2 2 / 2 \ / 2 \ / 2 \ \
2*x*\3*tan (x) + x *\1 + tan (x)/*\1 + 3*tan (x)/ + 6*x*\1 + tan (x)/*tan(x)/
$$2 x \left(x^{2} \left(\tan^{2}{\left(x \right)} + 1\right) \left(3 \tan^{2}{\left(x \right)} + 1\right) + 6 x \left(\tan^{2}{\left(x \right)} + 1\right) \tan{\left(x \right)} + 3 \tan^{2}{\left(x \right)}\right)$$
The third derivative
[src]
/ 2 2 / 2 \ / 2 \ / 2 \ 3 / 2 \ / 2 \ \
2*\3*tan (x) + 9*x *\1 + tan (x)/*\1 + 3*tan (x)/ + 18*x*\1 + tan (x)/*tan(x) + 4*x *\1 + tan (x)/*\2 + 3*tan (x)/*tan(x)/
$$2 \cdot \left(4 x^{3} \left(\tan^{2}{\left(x \right)} + 1\right) \left(3 \tan^{2}{\left(x \right)} + 2\right) \tan{\left(x \right)} + 9 x^{2} \left(\tan^{2}{\left(x \right)} + 1\right) \left(3 \tan^{2}{\left(x \right)} + 1\right) + 18 x \left(\tan^{2}{\left(x \right)} + 1\right) \tan{\left(x \right)} + 3 \tan^{2}{\left(x \right)}\right)$$
/ 2 2 / 2 \ / 2 \ / 2 \ 3 / 2 \ / 2 \ \
2*\3*tan (x) + 9*x *\1 + tan (x)/*\1 + 3*tan (x)/ + 18*x*\1 + tan (x)/*tan(x) + 4*x *\1 + tan (x)/*\2 + 3*tan (x)/*tan(x)/
$$2 \cdot \left(4 x^{3} \left(\tan^{2}{\left(x \right)} + 1\right) \left(3 \tan^{2}{\left(x \right)} + 2\right) \tan{\left(x \right)} + 9 x^{2} \left(\tan^{2}{\left(x \right)} + 1\right) \left(3 \tan^{2}{\left(x \right)} + 1\right) + 18 x \left(\tan^{2}{\left(x \right)} + 1\right) \tan{\left(x \right)} + 3 \tan^{2}{\left(x \right)}\right)$$