Mister Exam

Other calculators


x^3/(x-1)

Derivative of x^3/(x-1)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   3 
  x  
-----
x - 1
x3x1\frac{x^{3}}{x - 1}
x^3/(x - 1)
Detail solution
  1. Apply the quotient rule, which is:

    ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)g2(x)\frac{d}{d x} \frac{f{\left(x \right)}}{g{\left(x \right)}} = \frac{- f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}}{g^{2}{\left(x \right)}}

    f(x)=x3f{\left(x \right)} = x^{3} and g(x)=x1g{\left(x \right)} = x - 1.

    To find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

    1. Apply the power rule: x3x^{3} goes to 3x23 x^{2}

    To find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

    1. Differentiate x1x - 1 term by term:

      1. The derivative of the constant 1-1 is zero.

      2. Apply the power rule: xx goes to 11

      The result is: 11

    Now plug in to the quotient rule:

    x3+3x2(x1)(x1)2\frac{- x^{3} + 3 x^{2} \left(x - 1\right)}{\left(x - 1\right)^{2}}

  2. Now simplify:

    x2(2x3)(x1)2\frac{x^{2} \left(2 x - 3\right)}{\left(x - 1\right)^{2}}


The answer is:

x2(2x3)(x1)2\frac{x^{2} \left(2 x - 3\right)}{\left(x - 1\right)^{2}}

The graph
02468-8-6-4-2-1010-250250
The first derivative [src]
      3          2
     x        3*x 
- -------- + -----
         2   x - 1
  (x - 1)         
x3(x1)2+3x2x1- \frac{x^{3}}{\left(x - 1\right)^{2}} + \frac{3 x^{2}}{x - 1}
The second derivative [src]
    /         2            \
    |        x        3*x  |
2*x*|3 + --------- - ------|
    |            2   -1 + x|
    \    (-1 + x)          /
----------------------------
           -1 + x           
2x(x2(x1)23xx1+3)x1\frac{2 x \left(\frac{x^{2}}{\left(x - 1\right)^{2}} - \frac{3 x}{x - 1} + 3\right)}{x - 1}
The third derivative [src]
  /         3                     2  \
  |        x        3*x        3*x   |
6*|1 - --------- - ------ + ---------|
  |            3   -1 + x           2|
  \    (-1 + x)             (-1 + x) /
--------------------------------------
                -1 + x                
6(x3(x1)3+3x2(x1)23xx1+1)x1\frac{6 \left(- \frac{x^{3}}{\left(x - 1\right)^{3}} + \frac{3 x^{2}}{\left(x - 1\right)^{2}} - \frac{3 x}{x - 1} + 1\right)}{x - 1}
The graph
Derivative of x^3/(x-1)