Mister Exam

Derivative of e^(e^x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 / x\
 \E /
E    
eexe^{e^{x}}
E^(E^x)
Detail solution
  1. Let u=exu = e^{x}.

  2. The derivative of eue^{u} is itself.

  3. Then, apply the chain rule. Multiply by ddxex\frac{d}{d x} e^{x}:

    1. The derivative of exe^{x} is itself.

    The result of the chain rule is:

    eexexe^{e^{x}} e^{x}

  4. Now simplify:

    ex+exe^{x + e^{x}}


The answer is:

ex+exe^{x + e^{x}}

The first derivative [src]
    / x\
 x  \E /
e *e    
eexexe^{e^{x}} e^{x}
The second derivative [src]
             / x\
/     x\  x  \E /
\1 + e /*e *e    
(ex+1)eexex\left(e^{x} + 1\right) e^{e^{x}} e^{x}
The third derivative [src]
                      / x\
/       x    2*x\  x  \E /
\1 + 3*e  + e   /*e *e    
(e2x+3ex+1)eexex\left(e^{2 x} + 3 e^{x} + 1\right) e^{e^{x}} e^{x}