Mister Exam

Derivative of x^sin^-1x

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   1   
 ------
 sin(x)
x      
$$x^{\frac{1}{\sin{\left(x \right)}}}$$
  /   1   \
  | ------|
d | sin(x)|
--\x      /
dx         
$$\frac{d}{d x} x^{\frac{1}{\sin{\left(x \right)}}}$$
Detail solution
  1. Don't know the steps in finding this derivative.

    But the derivative is


The answer is:

The graph
The first derivative [src]
   1                              
 ------                           
 sin(x) /   1       cos(x)*log(x)\
x      *|-------- - -------------|
        |x*sin(x)         2      |
        \              sin (x)   /
$$x^{\frac{1}{\sin{\left(x \right)}}} \left(- \frac{\log{\left(x \right)} \cos{\left(x \right)}}{\sin^{2}{\left(x \right)}} + \frac{1}{x \sin{\left(x \right)}}\right)$$
The second derivative [src]
        /                            2                                       \
   1    |       /  1   cos(x)*log(x)\                                        |
 ------ |       |- - + -------------|                    2                   |
 sin(x) |  1    \  x       sin(x)   /    2*cos(x)   2*cos (x)*log(x)         |
x      *|- -- + ---------------------- - -------- + ---------------- + log(x)|
        |   2           sin(x)           x*sin(x)          2                 |
        \  x                                            sin (x)              /
------------------------------------------------------------------------------
                                    sin(x)                                    
$$\frac{x^{\frac{1}{\sin{\left(x \right)}}} \left(\frac{\left(\frac{\log{\left(x \right)} \cos{\left(x \right)}}{\sin{\left(x \right)}} - \frac{1}{x}\right)^{2}}{\sin{\left(x \right)}} + \log{\left(x \right)} + \frac{2 \log{\left(x \right)} \cos^{2}{\left(x \right)}}{\sin^{2}{\left(x \right)}} - \frac{2 \cos{\left(x \right)}}{x \sin{\left(x \right)}} - \frac{1}{x^{2}}\right)}{\sin{\left(x \right)}}$$
The third derivative [src]
        /                                                                                               /                       2                   \                        \
        |                              3                                          /  1   cos(x)*log(x)\ |  1    2*cos(x)   2*cos (x)*log(x)         |                        |
   1    |         /  1   cos(x)*log(x)\                                         3*|- - + -------------|*|- -- - -------- + ---------------- + log(x)|                        |
 ------ |         |- - + -------------|         3                                 \  x       sin(x)   / |   2   x*sin(x)          2                 |                    2   |
 sin(x) |2    3   \  x       sin(x)   /    6*cos (x)*log(x)   5*cos(x)*log(x)                           \  x                   sin (x)              /    3*cos(x)   6*cos (x)|
x      *|-- + - - ---------------------- - ---------------- - --------------- - --------------------------------------------------------------------- + --------- + ---------|
        | 3   x             2                     3                sin(x)                                       sin(x)                                   2               2   |
        \x               sin (x)               sin (x)                                                                                                  x *sin(x)   x*sin (x)/
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
                                                                                    sin(x)                                                                                    
$$\frac{x^{\frac{1}{\sin{\left(x \right)}}} \left(- \frac{\left(\frac{\log{\left(x \right)} \cos{\left(x \right)}}{\sin{\left(x \right)}} - \frac{1}{x}\right)^{3}}{\sin^{2}{\left(x \right)}} - \frac{3 \left(\frac{\log{\left(x \right)} \cos{\left(x \right)}}{\sin{\left(x \right)}} - \frac{1}{x}\right) \left(\log{\left(x \right)} + \frac{2 \log{\left(x \right)} \cos^{2}{\left(x \right)}}{\sin^{2}{\left(x \right)}} - \frac{2 \cos{\left(x \right)}}{x \sin{\left(x \right)}} - \frac{1}{x^{2}}\right)}{\sin{\left(x \right)}} - \frac{5 \log{\left(x \right)} \cos{\left(x \right)}}{\sin{\left(x \right)}} - \frac{6 \log{\left(x \right)} \cos^{3}{\left(x \right)}}{\sin^{3}{\left(x \right)}} + \frac{3}{x} + \frac{6 \cos^{2}{\left(x \right)}}{x \sin^{2}{\left(x \right)}} + \frac{3 \cos{\left(x \right)}}{x^{2} \sin{\left(x \right)}} + \frac{2}{x^{3}}\right)}{\sin{\left(x \right)}}$$
The graph
Derivative of x^sin^-1x